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Abstract
This paper investigates replacing i-vectors for text-independent
speaker verification with embeddings extracted from a feed-
forward deep neural network. Long-term speaker characteris-
tics are captured in the network by a temporal pooling layer
that aggregates over the input speech. This enables the network
to be trained to discriminate between speakers from variable-
length speech segments. After training, utterances are mapped
directly to fixed-dimensional speaker embeddings and pairs of
embeddings are scored using a PLDA-based backend. We com-
pare performance with a traditional i-vector baseline on NIST
SRE 2010 and 2016. We find that the embeddings outperform
i-vectors for short speech segments and are competitive on long
duration test conditions. Moreover, the two representations are
complementary, and their fusion improves on the baseline at all
operating points. Similar systems have recently shown promis-
ing results when trained on very large proprietary datasets, but
to the best of our knowledge, these are the best results reported
for speaker-discriminative neural networks when trained and
tested on publicly available corpora.
Index Terms: speaker recognition, speaker verification, deep
neural networks

1. Introduction
Speaker verification (SV) is the task of authenticating the
claimed identity of a speaker, based on some speech signal
and enrolled speaker record. Typically, low-dimensional rep-
resentations rich in speaker information are extracted for both
enrollment and test speech, and compared to enable a same-
or-different speaker decision. In modern systems, the repre-
sentations are usually i-vectors. If the lexical content of the
utterances is fixed to some phrase, the task is considered text-
dependent, otherwise it is text-independent. This paper investi-
gates replacing i-vectors with embeddings produced by a deep
neural network (DNN) for text-independent SV. The relative
strengths and weaknesses of this approach are assessed under
a variety of conditions. In some practical applications, ver-
ification must be performed using only a limited amount of
test speech, either to avoid latency in an online application or
due to limited availability. To supplement the core 2010 NIST
speaker recognition evaluation (SRE), we construct a modified
version in which the enrollment utterances are full-length, but
the test utterances have been truncated to the first few seconds
of speech. Finally, we assess performance on the Cantonese
and Tagalog NIST SRE 2016, which combines short-duration
test conditions with language-mismatch.

1.1. Speaker verification with i-vectors

Most text-independent SV systems are based on i-vectors [1].
The standard system consists of a pipeline of generative mod-
els, trained on independent subtasks: a universal background

model (UBM) that is used to collect sufficient statistics, a large
projection matrix to extract i-vectors, and a probabilistic linear
discriminant analysis (PLDA) backend to compute a similarity
score between i-vectors [2, 3, 4, 5, 6, 7].

Traditionally, the UBM is a Gaussian mixture model
(GMM) trained on acoustic features. Recent work has shown
that incorporating an ASR DNN acoustic model can improve
the UBM’s ability to model phonetic content [8, 9, 10, 11, 12].
However, this comes at the cost of greatly increased compu-
tational complexity compared to traditional systems [11]. In
addition, the advantages of incorporating ASR DNNs into the
i-vector pipeline have been largely isolated to English language
speech; [13] found no benefit in a multi-language setting. For
these reasons, we restrict the scope of study to traditional i-
vector systems using GMMs.

1.2. Speaker verification with DNNs

It may be possible to produce more powerful SV systems by
training them to directly discriminate between speakers. Some
studies have investigated discriminatively training components
of the i-vector system [14, 15]. Given their success in other ar-
eas of speech technology, a natural alternative is to use DNNs
trained on speaker-discriminative tasks. In early systems, neu-
ral networks are trained to classify training speakers [16, 17] or
in Siamese architectures to separate same-speaker and different-
speaker pairs [18, 19, 20]. After training, frame-level features
are extracted from the networks and used as input to Gaussian
speaker models. However, we are not aware of any work sug-
gesting that those methods are competitive with modern i-vector
systems for text-independent SV.

Progress has been primarily concentrated in text-dependent
SV on large proprietary datasets. In [21], a feed-forward DNN
is trained to classify speakers at the frame-level, on the phrase
“OK Google.” After training, the softmax output layer is dis-
carded and speaker representations (called d-vectors) are cre-
ated by averaging hidden layer activations. [22] built on this
approach for the same application, by training an end-to-end
system to discriminate between same-speaker and different-
speaker pairs.

Recently, [23] showed that an end-to-end system that
jointly learns embeddings along with a similarity metric could
outperform a traditional i-vector baseline for text-independent
SV. However, the approach required a large number of in-
domain training speakers to be effective. Our system is based
on [23], but modified in an effort to improve performance on
smaller, publicly available datasets. We split the end-to-end ap-
proach into two parts: a DNN to produce embeddings and a sep-
arate backend to compare pairs of embeddings. Finally, instead
of training the system to separate same-speaker and different-
speaker pairs, the DNN learns to classify training speakers.



Figure 1: Diagram of the DNN. Segment-level embeddings (e.g.,
a or b) can be extracted from any layer of the network after the
statistics pooling layer.

2. Baseline i-vector system
The baseline is a traditional i-vector system that is based on the
GMM-UBM Kaldi recipe described in [11]. The front-end fea-
tures consist of 20 MFCCs with a frame-length of 25ms that
are mean-normalized over a sliding window of up to 3 seconds.
Delta and acceleration are appended to create 60 dimension fea-
ture vectors. An energy-based VAD selects features correspond-
ing to speech frames. The UBM is a 2048 component full-
covariance GMM. The system uses a 600 dimension i-vector
extractor. Prior to PLDA scoring, i-vectors are centered, di-
mensionality reduced to 150 using LDA, and length normalized.
PLDA scores are normalized using adaptive s-norm [24].

3. DNN embedding system
3.1. Overview

The proposed system is a feed-forward DNN (depicted in Fig-
ure 1) that computes speaker embeddings from variable-length
acoustic segments. The architecture is based on the end-to-end
system described in [23]. However, an end-to-end approach re-
quires a large amount of in-domain data to be effective. We
replace the end-to-end loss with a multiclass cross entropy ob-
jective. In addition, a separately trained PLDA backend is used
to compare pairs of embeddings. This enables the DNN and
similarity metric to be trained on potentially different datasets.
The network is implemented using the nnet3 neural network li-
brary in the Kaldi Speech Recognition Toolkit [25].

3.2. Features

The features are 20 dimensional MFCCs with a frame-length
of 25ms, mean-normalized over a sliding window of up to 3
seconds. The same energy-based VAD from Section 2 filters
out nonspeech frames. Instead of stacking frames at the input,
short-term temporal context is handled by a time-delay DNN
architecture.

3.3. Neural network architecture

The network, illustrated in Figure 1, consists of layers that op-
erate on speech frames, a statistics pooling layer that aggregates
over the frame-level representations, additional layers that oper-
ate at the segment-level, and finally a softmax output layer. The
nonlinearities are rectified linear units (ReLUs).

The first 5 layers of the network work at the frame level,
with a time-delay architecture [26]. Suppose t is the current
time step. At the input, we splice together frames at {t− 2, t−
1, t, t+1, t+2}. The next two layers splice together the output
of the previous layer at times {t−2, t, t+2} and {t−3, t, t+3},
respectively. The next two layers also operate at the frame-level,
but without any added temporal context. In total, the frame-
level portion of the network has a temporal context of t − 8 to
t+ 8 frames. Layers vary in size, from 512 to 1536, depending
on the splicing context used.

The statistics pooling layer receives the output of the final
frame-level layer as input, aggregates over the input segment,
and computes its mean and standard deviation. These segment-
level statistics are concatenated together and passed to two ad-
ditional hidden layers with dimension 512 and 300 (either of
which may be used to compute embeddings) and finally the soft-
max output layer. Excluding the softmax output layer (because
it is not needed after training) there is a total of 4.4 million pa-
rameters.

3.4. Training

The network is trained to classify training speakers using a mul-
ticlass cross entropy objective function (Equation 1). The pri-
mary difference between this and training in [16, 17, 21] is that
our system is trained to predict speakers from variable-length
segments, rather than frames. Suppose there are K speakers in
N training segments. Then P (spkrk | x(n)

1:T ) is the probabil-
ity of speaker k given T input frames x

(n)
1 ,x

(n)
2 , ...x

(n)
T . The

quantity dnk is 1 if the speaker label for segment n is k, other-
wise it’s 0.

E = −
N∑

n=1

K∑
k=1

dnkln(P (spkrk | x(n)
1:T )) (1)

The DNN is trained on the combined SWBD and SRE data
described in Section 4.1. We refine the dataset by removing any
recordings that are less than 10 seconds long, and any speak-
ers with fewer than 4 recordings. This leaves a total of 4,733
speakers, which is the size of the softmax output layer.

To reduce sensitivity to utterance length, it is desirable to
train the DNN on speech chunks that capture the range of du-
rations we expect to encounter at test time (e.g., a few seconds
to a few minutes). However, GPU memory limitations force
a tradeoff between minibatch size and maximum training ex-
ample length. As a comprise, we pick examples that range
from 2 to 10 seconds (200 to 1000 frames) along with a mini-
batch size of 32 to 64. The example speech chunks are sampled
densely from the recordings, resulting in about 3,400 examples
per speaker. The network is trained for several epochs using
natural gradient stochastic gradient descent [27].

3.5. Speaker embeddings

Ultimately, the goal of training the network is to produce em-
beddings that generalize well to speakers that have not been
seen in the training data. We would like embeddings to capture
speaker characteristics over the entire utterance, rather than at



the frame-level. Thus, any layer after the statistics pooling layer
is a sensible place to extract the embedding from. We do not
consider the presoftmax affine layer because of its large size and
dependence on the number of speakers. In the network used in
this work, we are left with two affine layers from which to ex-
tract embeddings. These are depicted in Figure 1 as embeddings
a and b. Embedding a is the output of an affine layer directly
on top of the statistics. Embedding b is extracted from the next
affine layer after a ReLU, and so it is a nonlinear function of the
statistics. Since they are part of the same DNN, if embedding b
is computed then we get embedding a for “free.”

3.6. PLDA backend

We use the same backend for i-vectors and embeddings. Em-
beddings are centered and dimensionality is reduced using
LDA. As in the i-vector system, we found that an LDA dimen-
sion of 25% of the original worked well. After dimensional-
ity reduction, the embeddings are length normalized and pairs
of embeddings are compared using PLDA. PLDA scores are
normalized using adaptive s-norm [24]. As described in Sec-
tion 3.5, the DNN architecture presents the option of using em-
beddings a or b or in combination. Instead of concatenating
embeddings together, we compute separate PLDA backends for
each embedding, and average the scores.

4. Experiments
4.1. Training data

The training data consists of telephone speech, the bulk of
which is English. The SWBD portion consists of Switchboard
2 Phases 1, 2, and 3, and Switchboard Cellular. The SRE por-
tion contains NIST SREs from 2004 through 2008. In total,
there are about 65,000 recordings from 6,500 speakers. The i-
vector UBM and extractor as well as the speaker discriminative
DNN are trained on this data. Both systems use PLDA-based
backends trained on just the SRE data. Finally, the 2016 NIST
SRE was distributed with an unlabeled set of 2,472 utterances in
Cantonese and Tagalog. For both systems, we use this to center
the corresponding evaluation utterances and for score normal-
ization.

4.2. Evaluation

We assess performance on NIST 2010 and 2016 speaker recog-
nition evaluations [28, 29]. In the remaining sections, these
will be abbreviated as SRE10 and SRE16 respectively. SRE10
consists of English telephone speech. Our evaluation is based
on the extended core condition 5 and the 10s-10s condition.
To supplement the core SRE10 condition, we produce addi-
tional conditions in which the enrollment utterances are full-
length, but the test utterances have been truncated to the first
T ∈ {5, 10, 20, 60} seconds of speech, as determined by an
energy-based VAD. The 10s-10s condition was part of the offi-
cial SRE10 and consists of test and enrollment utterances that
contain about 10 seconds of speech. SRE16 is comprised of
Tagalog and Cantonese language telephone speech. The enroll-
ment utterances contain about 60 seconds of speech while the
test utterances range from 10 to 60 seconds of speech.

In addition to equal error-rate (EER), results are reported
using the official performance metric for each SRE. For SRE10,
this metric was the minimum of the normalized detection cost
function (DCF) with PTarget = 10−3 [28]. The primary SRE16
metric was a balanced (equalized) DCF averaged at two operat-

ing points [29]. The primary metrics are abbreviated to DCF10
and DCF16 respectively.

4.3. Results

In the following results, ivector refers to the traditional i-vector
baseline described in Section 2. The labels embedding a and
embedding b denote the systems consisting of embeddings ex-
tracted from either embedding layer of the same DNN (see Sec-
tion 3.5) and used as features to their own PLDA backends. The
label embeddings is the average of the PLDA backends for the
individual embeddings. In the following results, we focus on
comparing the i-vector baseline with these combined embed-
dings. Finally, fusion refers to the equally weighted sum fusion
of the PLDA scores of ivector and embeddings.

4.3.1. NIST SRE10
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Figure 2: DET curve for the pooled 5-60s portion of SRE10.

Table 1: EER(%) on NIST SRE10

10s-10s 5s 10s 20s 60s full
ivector 11.0 9.1 6.0 3.9 2.3 1.9

embedding a 11.0 9.5 5.7 3.9 3.0 2.6
embedding b 9.2 8.8 6.6 5.5 4.4 3.9
embeddings 7.9 7.6 5.0 3.8 2.9 2.6

fusion 8.1 6.8 4.3 2.9 2.1 1.8

Table 2: DCF10 on NIST SRE10

10s-10s 5s 10s 20s 60s full
ivector 0.962 0.901 0.749 0.613 0.460 0.403

embedding a 0.907 0.902 0.790 0.654 0.518 0.468
embedding b 0.951 0.927 0.866 0.828 0.782 0.768
embeddings 0.854 0.875 0.738 0.667 0.567 0.539

fusion 0.859 0.788 0.645 0.556 0.432 0.383

In this section, we look at performance on the SRE10 con-



ditions described in Section 4.2. Tables 1 and 2 demonstrate the
interplay between utterance-length and performance on SRE10.
We see that i-vectors are still dominant for the longest record-
ings, and outperform embeddings at both the EER and DCF10
operating points. However, as the test utterance length de-
creases, the performance of the embeddings improves relative
to the baseline. At 20 seconds of test speech, the combined
embeddings are 3% better than i-vectors in EER but 8% worse
at DCF10. With just 10 and 5 seconds of test speech, the em-
beddings are 17% and 16% better in EER and slightly better at
DCF10. The relative advantage of embeddings appears to be
largest when both enrollment and test utterances are short: in
the column labeled 10s-10s both the test and enroll utterances
contain only about 10 seconds of speech, and we see that the
combined embeddings are 28% better in EER and 11% better in
DCF10. Figure 2 illustrates the detection error tradeoff (DET)
curves for the systems when pooled across the truncated test
conditions. Although embeddings are better at the EER operat-
ing point, they favor the low miss rate, and are slightly worse
when compared at a very low false alarm rate.

Since the i-vector and DNN systems are so dissimilar, we
expect good performance from their fusion. We observe an im-
provement over using i-vectors alone at all operating points and
conditions. The largest improvement is in EER on the 10s con-
dition, which is 28% better than the baseline. Even on the full-
length condition, where i-vectors are strongest, there is a 5%
improvement over using the i-vectors alone, in both DCF10 and
EER.

4.3.2. NIST SRE16
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Figure 3: DET curve for SRE16, pooled across Cantonese and
Tagalog.

In this section, we evaluate the same systems from Section
4.3.1 on SRE16. Using the same embedding and i-vector sys-
tems for both SRE10 and SRE16 avoids the complexity of de-
veloping variants of each system that are optimized for different
evaluations. However, this does cause a mismatch between the
predominately English training data (used to optimize both sys-
tems) and the Tagalog and Cantonese evaluation speech. As a
result, the performance reported here may lag behind that of
counterparts optimized specifically for SRE16.

Tables 3 and 4 report performance in EER and DCF16 re-

Table 3: EER(%) on NIST SRE16

Cantonese Tagalog pool
ivector 8.3 17.6 13.6

embedding a 7.7 17.6 13.1
embedding b 7.8 17.4 13.1
embeddings 6.5 16.3 11.9

fusion 6.3 15.4 11.3

Table 4: DCF16 on NIST SRE 2016

Cantonese Tagalog pool
ivector 0.549 0.842 0.711

embedding a 0.532 0.835 0.689
embedding b 0.630 0.851 0.741
embeddings 0.508 0.803 0.658

fusion 0.442 0.794 0.622

spectively. Pooled across languages, we see that the combined
embeddings outperforms the i-vector baseline by 13% in EER
and 7% in DCF16. After combining with i-vectors, the im-
provement increases to 17% in EER and 13% in DCF16. The
DET plot in Figure 3 shows that these improvements are con-
sistent across operating points.

Although the embeddings also perform better on Tagalog,
improvement is largest for the Cantonese portion. Compared to
the i-vector baseline, the embeddings are 22% better in terms of
EER and 7% in DCF16. The fused system is even better, and
improves on the i-vector baseline by 24% in EER and 19% in
DCF16.

5. Conclusions
In this paper, we investigated deep neural network embeddings
for text-independent speaker verification. Overall, the embed-
dings appear to be competitive with a traditional i-vector base-
line and are complementary when fused. We found that, al-
though i-vectors are more effective on the full-length SRE10,
embeddings are better on the short duration conditions. This un-
derscores the findings of [23, 30] that DNNs may be capable of
producing more powerful representations of speakers from short
speech segments. SRE16 presented the challenge of language
mismatch between the predominantly English training data and
the Cantonese and Tagalog evaluation. We saw that embeddings
outperformed i-vectors on both languages, suggesting that they
may be more robust to this domain mismatch. Although the re-
sults are quite promising, we believe that PLDA may not be the
optimal similarity metric for the embeddings. In future work,
we will use the method described in this paper as pretraining
for the fully end-to-end approach in [23], so that a more appro-
priate similarity metric is learned along with the embeddings.
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