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Abstract—GMM-UBM is widely used for the text-dependent
task for its simplicity and effectiveness, while i-vector provides
a compact representation for speaker information. Thus it is
promising to fuse these two frameworks. In this paper, a variation
of traditional i-vector extracted at frame level is appended
with MFCC as tandem features. Incorporating this feature into
GMM-UBM system achieves 26% and 41% performance gain
compared with DNN i-vector baseline on the RSR2015 and
RedDots evaluation set, respectively. Moreover, the performance
of the proposed system that trained on 86 hours data is on par
with that of the DNN i-vector baseline trained on a much larger
dataset (5000 hours).

I. INTRODUCTION

Speaker verification is the task of identifying whether the
target speaker speaks in a test utterance. According to the
text contents of the test utterances, speaker verification can
be classified into two categories, text-dependent and text-
independent. For the text-dependent task, the contents of the
test and target utterances are restricted to be identical, whereas
the text-independent task does not have such constraint.

Over the last few decades, a variety of frameworks were
proposed for the speaker verification task. In [1], Gaussian
Mixture Model-Universal Background Model (GMM-UBM)
with Maximum a Posteriori framework was proposed. In this
framework, the UBM represents a speaker independent model
and the speaker-specific GMM is adapted from it. Based on
GMM-UBM framework, Joint Factor Analysis (JFA) was then
applied to model the supervectors adapted from UBM in
independent speaker and channel subspace [2]. However, work
in [3] showed that the channel factors in JFA also contains
speaker information. /-vector was then proposed, where the
speaker and channel variability are jointly modeled by a single
total variability subspace [4].

Recently, motivated by the success of Deep Neural Net-
work (DNN) in automatic speech recognition (ASR) [5], [6],
[7], the use of DNN in speaker verification is intensively
investigated [8], [9], [10], [11], [12]. Other than GMM, DNN
provides an alternative way to calculate the Sufficient Statistics
(SS) for estimating the i-vector. It is observed that DNN pos-
terior based i-vector system achieves significant improvement
over GMM posterior based i-vector system [10].

In spite of the superiority of i-vector based framework
in text-independent speaker verification, GMM-UBM frame-
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work is reported to achieve better performance for the text-
dependent task [13]. Since i-vectors carry elaborate speaker
information, it is expected that incorporating i-vector based
features into GMM-UBM framework can make further im-
provement. To be compatible with GMM-UBM framework, a
frame level i-vector called online i-vector is used in this work.

In this paper, we propose to concatenate online i-vector and
Mel-Frequency Cepstral Coefficients (MFCC) in the tandem
manner and use it as features for a GMM-UBM text-dependent
speaker verification system. The performance of the proposed
system is evaluated on RSR2015 and RedDots datasets.

The rest of the paper is organized as follows. Sec. II
shows the conventional speaker verification systems. After
the brief introduction of baseline systems, Sec. III describes
the online i-vector extraction procedure. In Sec. IV, we will
present the details of our proposed GMM-UBM systems with
online i-vector features. The experiment setups and results are
shown and discussed in Sec. V and Sec.VI. The conclusion is
presented in Sec. VIL

II. BASELINE SYSTEMS

A. GMM-UBM System

GMM-UBM [1] framework is a classical approach used in
speaker verification systems. Building a GMM-UBM system
has several phases:

o Feature Extraction. The baseline system adopts MFCC as
features.

o Training a speaker-independent background model using
huge amount of data from different speakers.

« Obtain the speaker-specific GMM by adapting the trained
UBM parameters via MAP algorithm.

o Compute the log likelihood ratio of the test utterances
against the declared speaker GMM and UBM. The score
s depending on both the target model (Aiarget) and
background model (Aypas) is defined as follows,

L

1
s = Z Z{logp(xtp\target) - Ing(Xt|AUB]W)} (l)

t=1

which measures the difference of the target and back-
ground models in generating the observations x1, ...,Xy,
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B. GMM Posterior Based i-vector System

In the i-vector framework, the speaker- and session-
dependent supervector M is modeled as

M=m+Tw 2)

where m is the C'F-dimensional mean supervector of UBM ,
C is the number of Gaussian components and F' represents
the feature dimension. T is a rectangular low-rank matrix
which captures speaker and session variability. w is a real-
ization of a latent variable W having a standard normal prior
distribution. For each supervector adapted from an utterance,
the speaker information is assumed to be contained in w.
Suppose the input utterance consists of L frames, the acoustic
features are represented as a set of [F'-dimensional vectors:
X = {x1,X2,...,x1}. The i-vector for the utterance is defined
as the point estimation of the conditional distribution of W
given the utterance. The i-vector of the utterance can be
calculated as follows:

d=(1+TZINWX)T)IT'ZIF(X) (3)

where X is a diagonal covariance matrix of shape (C'F x C'F)
that describes the residual variability not captured by T matrix.
N(X) is a diagonal matrix whose diagonal blocks are N I(c =
1,2,...,C) and F(X) is the supervector obtained by stacking
F.. The sufficient statistics are calculated as follows:

Ye(x¢) = p(e|xe, \vsar) 4
L

Ne = 7e(xt) (5)
) tzl

Fc = ’Yc(xt)(xt - mc) (6)

t=1

where 7,.(x¢) and m, are the occupation probability and mean
vector of c-th Gaussian component, respectively.

C. DNN Posterior Based i-vector Systems

In conventional i-vector systems described in the previ-
ous subsection, posteriors ~y.(xt) used for the calculation of
sufficient statistics are derived from the UBM. However, it
is shown in [10] that with the posteriors obtained from a
phonetically-aware DNN, the i-vector system can achieve sig-
nificant performance gain. In this framework, the use of DNN
“senone” (context-dependent triphones) posterior is proposed
to compute the alignments 7.(x¢), where ¢ denotes the c-th
senone used in the phonetically-aware DNN. In this paper,
time-delay deep neural network (TDNN) [11] is used.

III. ONLINE i-VECTOR EXTRACTION

Online i-vectors are i-vectors extracted from short segments
of speech utterances, which makes it possible to represent
short duration speaker characteristics of speech utterances. The
online i-vector has been investigated in ASR [14], speaker
diarization [15] and speaker verification system [13]. Different
from traditional i-vectors which are extracted at utterance
level, online i-vectors are extracted every 2L + 1 (context size
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L = 10 in our proposed systems) frames with a shift step
of 1 frame. The sufficient statistics of an online i-vector are
computed with posteriors either from a GMM-UBM or from a
phonetically-aware DNN. As online i-vectors are extracted at
frame level, it can be used like other frame-wise features, such
as MFCC, to model speaker specific traits better. In this paper,
we propose to use online i-vectors as features to construct
a series of GMM-UBM systems for text-dependent speaker
verification.

Conventionally, the training of the T matrix accumulates
sufficient statistics at utterance level. In this paper, the data for
T matrix training is drawn from NIST SRE and Switchboard
datasets with an average duration per utterance of 5 to 6
minutes. However, the extraction of each online i-vector in
this paper is performed on a short segment with a duration of
only 21 frames. Considering the consistency between training
process and extraction process, the training utterances are cut
into small segments. The impact of such preprocessing step on
the system performance can be found in the experiment part.

IV. ONLINE i-VECTOR BASED GMM-UBM SYSTEMS

GMM-UBM system demonstrates robust performance for
text-dependent speaker verification system, while i-vector
exhibits excellent performance in text-independent systems.
Frame-level online i-vector is optimized to carry more “well-
organized” speaker identity information, hence it can be
adopted as features in the traditional GMM-UBM system.
In this paper, we investigated two paradigms of integrating
online i-vector features into GMM-UBM system, using online
i-vector only or concatenated with MFCC in a tandem man-
ner. Experiments show that the new tandem feature achieves
promising performance improvement compared with the base-
line system. The diagram of the proposed system is shown in
Fig. 1.

V. EXPERIMENTAL SETUPS
A. Training and Evaluation Datasets

All experiments in this paper are performed on 8 kHz speech
files. Switchboard dataset (~ 300 hours) [16] is used to train
the phonetically-aware DNN [10]. I-vector extractor is trained
on a 86-hour subset of NIST SRE 2004-2008, Switchboard
Cellular 1&2 and Switchboard Phase 2&3 datasets. RSR2015
partl background data (~ 24 hours, down sampled to 8 kHz
1) is taken as the development data for the training of PLDA
and the training of UBM in GMM-UBM systems. RSR2015
partl and RedDots partl (down-sampled to 8 kHz) are chosen
as the evaluation datasets. Both of them are designed for short
duration text-dependent speaker verification. In text-dependent
speaker verification, three test conditions are defined according
to three impostor types: (1) the content does not match (2) the
speaker does not match (3) neither the speaker nor the content
match.

ICompared with using 16 kHz data, there is a reasonable deterioration in
performance using 8 kHz data.
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Fig. 1. The diagram of proposed online i-vector based GMM-UBM system

o RSR2015 partl: a close set text-dependent speaker ver-
ification evaluation dataset in English language. This
dataset aims at providing a database for the study on
lexical variability in text-dependent verification. The de-
tailed description for RSR2015 evaluation dataset can be
found in [17]. In this paper, following the settings of [17]
the trials of condition 3 in RSR2015 partl are excluded
as these are easy trials.

« RedDots partl: an open set text-dependent speaker ver-
ification evaluation dataset in English language. The
speech utterances are collected from 62 speakers through
mobile crowd-sourcing over a one year period. Compared
with RSR2015 partl, the RedDots partl corpus shows a
high degree of intra-speaker variations due to the long
recording period and various recording conditions. The
detailed description for RedDots project can be found
in [17].

B. Baseline Systems

The acoustic features used in baseline systems are 20-
dimensional MFCC features extracted from 25ms duration
frames with a frame shift of 10ms, appended with delta
and acceleration parameters. All features are processed using
cepstral mean normalization. In GMM-UBM baseline system,
these features are taken as the input features for UBM training
and scoring. In the i-vector systems, the MFCC features are
used for sufficient statistics calculation with a UBM model or
a DNN model. All the UBMs in this paper have 1024 Gaussian
mixture components. The dimension of i-vectors is set to 600.
The DNN for posterior calculation is trained with 5419 output
units and it takes 40-dimensional MFCC features appended
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with delta and acceleration parameters as input. A time delay
deep neural network (TDNN) is used instead of the traditional
feed-forward deep neural network. The same configuration as
in [11] is adopted (The standard recipe provided in Kaldi
egs/srel0/v2). The descriptions of three baseline systems are
listed below:

« MAP (MFCC): GMM-UBM
dimensional MFCC features only.

o i-vector: GMM posterior based i-vector system with 600-
dimensional i-vectors, scoring with a PLDA backend.

o DNN-i-vector: DNN posterior based i-vector system,
600-dimensional i-vectors, scoring with a PLDA backend.

system with  60-

C. Online i-vector Based GMM-UBM Systems

The online i-vector based systems are built on top of GMM-
UBM framework. The T matrix for online i-vector extraction
is trained on short segments with a length of 21 frames.
Those short segments are directly cut from the original training
utterances. Considering the computation limitation, the online
i-vectors are further projected using Principle Component
Analysis (PCA) into 60-dimensional features. We proposed
to use the concatenation of projected online i-vectors with
the original 60-dimensional MFCC features, as the input
to a GMM-UBM system. The detailed description of the
experiments are listed below:

« MAP (online): GMM-UBM system with 60-dimensional
PCA projected online i-vector features

e MAP (concat): GMM-UBM system with concatenated
60-dimensional PCA projected online i-vector features
and 60-dimensional MFCC features

¢ MAP (DNN-online): GMM-UBM system with 60-
dimensional PCA projected online i-vector features ex-
tracted using DNN posteriors

« MAP (DNN-concat): GMM-UBM system with concate-
nated 60-dimensional PCA projected online i-vector fea-
tures extracted using DNN posteriors and 60-dimensional
MEFCC features

V1. EXPERIMENT RESULTS
A. Comparison of proposed system and baseline

In this section, the experiment results are shown in Equal
Error Rate (EER) performance metric. As shown in Tab. I, II,
the concatenated tandem feature based system outperforms the
systems based on MFCC or online i-vector, which shows that
MFCC features and online i-vector features are complementary
to each other.

The best baseline system is the “DNN-i-vector” system.
It can be observed that the proposed “MAP (DNN-concat)”
system obtained 41% EER relative reduction over the best
baseline system on RedDots evaluation dataset. On RSR2015
partl, the EER is reduced by 26% with the proposed system. A
larger performance improvement on RedDots evaluation set is
achieved, which exhibits the robustness of the proposed system
in complicated evaluation condition.
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TABLE I
PERFORMANCE OF PROPOSED SYSTEMS ON REDDOTS
system cond-1 | cond-2 | cond-3 | cond-all
baseline MAPMFCC) 8.75 6.40 2.14 3.12
systems i-vgctor 14.91 9.00 5.19 5.99
DNN-i-vector 6.86 5.52 2.32 3.12
MAP (online) 11.12 7.92 4.54 5.29
proposed MAP (concat) 4.39 4.39 1.21 1.96
systems | MAP (DNN-online) 7.48 6.37 2.68 3.61
MAP (DNN-concat) 3.82 4.46 0.90 1.83
TABLE 11
PERFORMANCE OF PROPOSED SYSTEMS ON RSR2015
system cond-1 | cond-2 | cond-all

baseline MAP(MFCC) 1.19 2.44 2.08

systems z-ve_ctor 2.40 3.00 2.78

DNN-i-vector 0.50 1.44 1.22

MAP (online) 1.59 2.24 2.02

proposed MAP (concat) 0.29 1.33 1.10

systems MAP (DNN-online) 0.66 1.27 1.17

MAP (DNN-concat) 0.14 1.11 0.90

B. Comparison of proposed system and baselines trained on
5000-hour data

Another three baseline systems are built on a larger training
dataset (about 5000 hours), including NIST SRE 2004-2008,
Switchboard Cellular 1&2 and Switchboard Phase 2&3. As
shown in Tab. III and Tab. IV, on the RedDots evaluation
dataset, the proposed system trained on 86 hours subset still
outperforms slightly the baseline systems trained on 5000
hours data. On RSR2015 evaluation dataset, the proposed
system also achieves comparable performance compared with
the baseline systems. Moreover, this observation verifies the
robustness of proposed method under complicated evaluation
condition once again.

TABLE 11
PROPOSED SYSTEM V.S. BASELINE SYSTEMS (5000 HOURS) ON REDDOTS
hours system cond-1 | cond-2 | cond-3 | cond-all
MAPMEFCC) 9.16 6.91 2.32 3.30
5000 i-vector 8.00 6.45 2.30 3.23
DNN-i-vector 5.44 4.13 1.50 2.17
86 MAP (DNN-concat) 3.82 4.46 0.90 1.83
TABLE IV
PROPOSED SYSTEM V.S. BASELINE SYSTEMS (5000 HOURS) ON RSR2015
hours system cond-1 | cond-2 | cond-all
MAPMEFCC) 1.19 2.44 2.08
5000 i-vector 0.94 1.39 1.27
DNN-i-vector 0.43 1.00 0.86
86 MAP (DNN-concat) 0.14 1.11 0.90

C. Effectiveness of short segment training

As described in Sec. III, the length of training utterances
for T matrix training should be consistent with that of the
short segments for online i-vector extraction. To verify the
effectiveness of the proposed T matrix training method, we
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conducted another set of experiments with the T matrix trained
on original utterances of full length. As indicated in Tab. V
and Tab. VI, short segment training can achieve consistent
performance improvement. The experiment results reflect the
effectiveness of the proposed training method of T matrix for
online i-vector extraction.

TABLE V
COMPARISON OF TWO T MATRIX TRAINING METHODS IN GMM-UBM
FRAMEWORK EVALUATED ON REDDOTS

system cond-1 | cond-2 | cond-3 | cond-all
full® MAP(online) 20.18 9.88 6.63 7.48
seg- MAP(concat) 5.96 4.93 1.60 2.55
ment MAP(DNN-online) 14.50 8.38 4.98 5.78
training | MAP(DNN-concat) 5.26 4.72 1.47 2.22
short® MAP (online) 11.12 7.92 4.54 5.29
seg- MAP (concat) 4.39 4.39 1.21 1.96
ment MAP (DNN-online) 7.48 6.37 2.68 3.61
training | MAP (DNN-concat) 3.82 4.46 0.90 1.83

2 full/short segment training indicates the training of T matrix is performed
on original length utterances and short segments.

TABLE VI
COMPARISON OF TWO T MATRIX TRAINING METHODS IN GMM-UBM
FRAMEWORK EVALUATED ON RSR2015

system cond-1 | cond-2 | cond-all
full MAP (online) 3.87 3.27 3.49
seg- MAP (concat) 0.41 1.42 1.17
ment MAP (DNN-online) 1.65 1.96 1.84
training | MAP (DNN-concat) 0.29 1.20 0.99
short MAP (online) 1.59 2.24 2.02
seg- MAP (concat) 0.29 1.33 1.10
ment MAP (DNN-online) 0.66 1.27 1.17
training | MAP (DNN-concat) 0.14 1.11 0.90

VII. CONCLUSIONS

In this paper, we have presented the application of on-
line i-vectors based on GMM-UBM framework for the text-
dependent speaker verification task. The proposed “MAP
(DNN-concat)” system achieves 26% and 41% performance
gain compared with DNN i-vector baseline on the RSR2015
and RedDots evaluation set, respectively. Moreover, this per-
formance is comparable with the DNN i-vector baseline
trained on a much larger dataset (86 hours v.s. 5000 hours). Ex-
periments also exhibit the robustness of the proposed method
in complicated evaluation condition.
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