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Abstract
In this paper we present a data-driven, integrated approach to
speaker verification, which maps a test utterance and a few ref-
erence utterances directly to a single score for verification and
jointly optimizes the system’s components using the same eval-
uation protocol and metric as at test time. Such an approach will
result in simple and efficient systems, requiring little domain-
specific knowledge and making few model assumptions. We
implement the idea by formulating the problem as a single neu-
ral network architecture, including the estimation of a speaker
model on only a few utterances, and evaluate it on our inter-
nal ”Ok Google” benchmark for text-dependent speaker veri-
fication. The proposed approach appears to be very effective
for big data applications like ours that require highly accurate,
easy-to-maintain systems with a small footprint.
Index Terms: speaker verification, end-to-end training, deep
learning.

1. Introduction
Speaker verification is the process of verifying, based on a
speaker’s known utterances, whether an utterance belongs to
the speaker. When the lexicon of the spoken utterances is con-
strained to a single word or phrase across all users, the process is
referred to as global password text-dependent speaker verifica-
tion. By constraining the lexicon, text-dependent speaker verifi-
cation aims to compensate for phonetic variability, which poses
a significant challenge in speaker verification [1]. At Google,
we are interested in text-dependent speaker verification with the
global password ”Ok Google.” The choice of this particularly
short, approximately 0.6 seconds long global password relates
to the Google Keyword Spotting system [2] and Google Voice-
Search [3] and facilitates the combination of the systems.

In this paper, we propose to directly map a test utterance
together with a few utterances to build the speaker model, to
a single score for verification. All the components are jointly
optimized using a verification-based loss following the standard
speaker verification protocol. Compared to existing approaches,
such an end-to-end approach may have several advantages, in-
cluding the direct modeling from utterances, which allows for
capturing long-range context and reduces the complexity (one
vs. number of frames evaluations per utterance), and the direct
and joint estimation, which can lead to better and more compact
models. Moreover, this approach often results in considerably
simplified systems requiring fewer concepts and heuristics.

More specifically, the contributions of this paper include:
• formulation of end-to-end speaker verification architec-

ture, including the estimation of a speaker model on a
few utterances (Section 4);
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• empirical evaluation of end-to-end speaker verification,
including comparison of frame (i-vectors, d-vectors) and
utterance-level representations (Section 5.2) and analysis
of the end-to-end loss (Section 5.3);

• empirical comparison of feedforward and recurrent neu-
ral networks (Section 5.4).

This paper focuses on text-dependent speaker verification for
small footprint systems, as discussed in [4]. But the approach is
more general and could be used similarly for text-independent
speaker verification.

In previous studies, the verification problem is broken down
into more tractable, but loosely connected subproblems. For
example, the combination of i-vector and probabilistic linear
discriminant analysis (PLDA) [5, 6] has become the dominant
approach, both for text-independent speaker verification [7, 8,
5, 6] and text-dependent speaker verification [9, 10, 11]. Hy-
brid approaches that include deep learning based components
have also proved to be beneficial for text-independent speaker
recognition [12, 13, 14]. For small footprint systems, how-
ever, a more direct deep learning modeling may be an attrac-
tive alternative [15, 4]. To the best of our knowledge, recurrent
neural networks have been applied to related problems such as
speaker identification [16] and language identification [17], but
not to the speaker verification task. The proposed neural net-
work architecture can be thought of as joint optimization of
a generative-discriminative hybrid and is in the same spirit as
deep unfolding [18] for adaptation.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief overview of speaker verification in gen-
eral. Section 3 describes the d-vector approach. Section 4 intro-
duces the proposed end-to-end approach to speaker verification.
An experimental evaluation and analysis can be found in Sec-
tion 5. The paper is concluded in Section 6.

2. Speaker Verification Protocol
The standard verification protocol can be divided into the three
steps: training, enrollment, and evaluation, which we describe
in more detail next.

Training In the training stage, we find a suitable internal
speaker representation from the utterance, allowing for a sim-
ple scoring function. In general, this representation depends on
the type of the model (e.g., Gaussian subspace model or deep
neural network), the representation level (e.g., frame or utter-
ance), and the model training loss (e.g., maximum likelihood
or softmax). State-of-the art representations are a summary of
frame-level information, such as i-vectors [7, 8] and d-vectors
(Section 3).

Enrollment In the enrollment stage, a speaker provides a few
utterances (see Table 1), which are used to estimate a speaker
model. A common choice is to average the i-vectors [19] or
d-vectors [15, 4] of these utterances.



Evaluation During the evaluation stage, the verification task
is performed and the system is evaluated. For verification, the
value of a scoring function of the utterance X and the test
speaker spk, S(X, spk), is compared against a pre-defined
threshold. We accept if the score exceeds the threshold, i.e.,
the utterance X comes from speaker spk, and reject otherwise.
In this setup, two types of error can occur: false reject and false
accept. Clearly, the false reject rate and the false accept rate
depend on the threshold. When the two rates are equal, the
common value is called equal error rate (EER).

A simple scoring function is the cosine similarity between
the speaker representation f(X) of an evaluation utterance X
(see paragraph ”Training”) and the speaker model mspk (see
paragraph ”Enrollment”):

S(X, spk) = [f(X)>mspk]/[‖f(X)‖ ‖mspk‖].
PLDA has been proposed as a more refined, data-driven scoring
approach.

3. D-Vector Baseline Approach
D-vectors are derived from a deep neural network (DNN), as
speaker representation of an utterance. A DNN consists of the
successive application of several non-linear functions in order to
transform the speaker utterance into a vector where a decision
can be easily made. Fig. 1 depicts the topology of our baseline
DNN. It includes a locally-connected layer [4] and several fully
connected layers. All layers use ReLU activation except the
last, which is linear. During the training stage, the parameters
of the DNN are optimized using the softmax loss, which, for
convenience, we define to comprise a linear transformation with
weight vectors wspk and biases bspk, followed by the softmax
function and the cross-entropy loss:

lsoftmax = − log
exp(w>spky + bspk)∑
˜spk exp(w

>
˜spk
y + b ˜spk)

where the activation vector of the last hidden layer is denoted
by y and spk denotes the correct speaker. The normalization is
over all competing training speakers ˜spk.

After the training stage is completed, the parameters of the
DNN are fixed. Utterance d-vectors are obtained by averaging
the activation vectors of the last hidden layer for all frames of
an utterance. Each utterance generates one d-vector. For en-
rollment, the speaker model is given by the average over the d-
vectors of the enrollment utterances. Finally, during the evalua-
tion stage, the scoring function is the cosine similarity between
the speaker model d-vector and the d-vector of a test utterance.

   DNN

frame or utterance

Locally connected, ReLU

...

Fully connected, ReLU

Fully connected, Linear

Speaker Representation

Figure 1: Deep neural network (DNN) with a locally-connected
layer followed by fully-connected layers.
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Figure 2: End-to-end architecture: the input is an ”evalua-
tion” utterance and up to N ”enrollment” utterances, which the
network maps to a single output node (accept/reject). The ”en-
rollment” utterances are used to estimate the speaker model.

Criticism about this baseline approach includes the limited
context of the d-vectors derived from (a window of) frames and
the type of the loss. The softmax loss attempts to discrimi-
nate between the true speaker and all competing speakers but
does not follow the standard verification protocol in Section 2.
As a result, heuristics and scoring normalization techniques be-
comes necessary to compensate for inconsistencies. Moreover,
the softmax loss does not scale well with more data as the com-
putational complexity is linear in the number of training speak-
ers and requires a minimum amount of data per speaker to es-
timate the speaker-specific weights and biases. The complexity
issue (but not the estimation issue) can be alleviated by candi-
date sampling [20].

Similar concerns can be expressed over the alternative
speaker verification approaches, where some of the compo-
nent blocks are either loosely connected or not directly opti-
mized following the speaker verification protocol. For example,
GMM-UBM [7] or i-vector models does not directly optimize a
verification problem; the PLDA [5] model is not followed a re-
finement of the i-vector extraction; or long contextual features
may be ignored by frame-based GMM-UBM models [7].

4. End-To-End Speaker Verification
In this section, we integrate the steps of the speaker verification
protocol (Section 2) into a single network, see Fig. 2. The in-
put of this network consists of an ”evaluation” utterance and
a small set of ”enrollment” utterances. The output is a sin-
gle node indicating accept or reject. We jointly optimized this
end-to-end architecture using DistBelief [21], a predecessor of
TensorFlow [22]. In both tools, complex computational graphs
such as the one defined by our end-to-end topology can be de-
composed into a sequence of operations with simple gradients
such as sums, divisions, and cross products of vectors. After the
training step, all network weights are kept fixed, except for the
bias of the one-dimensional logistic regression (Fig. 2) which is
manually tuned on the enrollment data. Apart from this, nothing
is done in the enrollment step as the speaker model estimation
is part of the network. At test time, we feed an evaluation utter-
ance and the enrollment utterances of a speaker to be tested to
the network, which directly outputs the decision.

We use neural networks to obtain the speaker representation
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Figure 3: Long short-term memory recurrent neural network
(LSTM) with a single output.

of an utterance. The two types of networks we use in this work
are depicted in Figs. 1 and 3: a deep neural network (DNN)
with locally-connected and fully connected layers as our base-
line DNN in Section 3 and a long short-term memory recurrent
neural network (LSTM) [23, 24] with a single output. DNNs
assume a fixed-length input. To comply with this constraint, we
stack the frames of a sufficiently large window of fixed length
over the utterance and use them as the input. This trick is not
needed for LSTMs but we use the same window of frames for
better comparability. Unlike vanilla LSTMs which have multi-
ple outputs, we only connect the last output to the loss to obtain
a single, utterance-level speaker representation.

The speaker model is the average over a small number of
”enrollment” representations (Section 2). We use the same net-
work to compute the internal representations of the ”test” ut-
terance and of the utterances for the speaker model. The ac-
tual number of utterances per speaker available in training typi-
cally is much larger (a few hundred or more) than in enrollment
(fewer than ten), see Table 1. To avoid a mismatch, we sample
for each training utterance only a few utterances from the same
speaker to build the speaker model at training time. In general,
we cannot assume to have N utterances per speaker. To allow
for a variable number of utterances, we pass a weight along with
the utterance to indicate whether to use the utterance.

Finally, we compute the cosine similarity between the
speaker representation and the speaker model, S(X, spk), and
feed it to a logistic regression including a linear layer with a
bias. The architecture is optimized using the end-to-end loss

le2e = − log p(target) (1)

with the binary variable target ∈ {accept, reject}, p(accept) =
(1+exp(−wS(X, spk)−b))−1, and p(reject) = 1−p(accept).
The value −b/w corresponds with the verification threshold.

The input of the end-to-end architecture are 1 + N utter-
ances, i.e., an utterance to be tested and up to N different ut-
terances of the same speaker to estimate the speaker model. To
achieve a good tradeoff between data shuffling and memory, the
input layer maintains a pool of utterances to sample 1+N utter-
ances from for each training step and gets refreshed frequently
for better data shuffling. As a certain number of utterances of
the same speaker is needed for the speaker model, the data is
presented in small groups of utterances of the same speaker.

5. Experimental Evaluation
We evaluate the proposed end-to-end approach on our internal
”Ok Google” benchmark.

5.1. Data Sets & Basic Setup
We tested the proposed end-to-end approach on a set ”Ok
Google” utterances collected from anonymized voice search
logs. For improved noise robustness, we perform multistyle

training. The data were augmented by artificially adding in car
and cafeteria noise at various SNRs, and simulating different
distances between the speaker and the microphone, see [2] for
further details. Enrollment and evaluation data include only real
data. Table 1 shows some data set statistics.

Table 1: Data set statistics.
#utterances #speakers #utts / spk

(#augmented)
train 2M 2M (9M) 4k >500
train 22M 22M (73M) 80k >150
enrollment 18k 3k 1-9
evaluation 20k 3k 3-5

The utterances are forced aligned to obtain the ”Ok Google”
snippets. The average length of these snippets is around 80
frames, for a frame rate of 100 Hz. Based on this observa-
tion, we extracted the last 80 frames from each snippet, pos-
sibly padding or truncating frames at the beginning of the snip-
pet. The frames consist of 40 log-filterbanks (with some basic
spectral subtraction) each.

For DNNs, we concatenate the 80 input frames, resulting in
a 80x40-dimensional feature vector. Unless specified otherwise,
the DNN consists of 4 hidden layers. All hidden layers in the
DNN have 504 nodes and use ReLU activation except the last,
which is linear. The patch size for the locally-connected layer
of the DNN is 10×10. For LSTMs, we feed the 40-dimensional
feature vectors frame by frame. We use a single LSTM layer
with 504 nodes without a projection layer. The batch size is 32
for all experiments.

Results are reported in terms of equal error rate (EER),
without and with t-norm score normalization [25].

5.2. Frame-Level vs. Utterance-Level Representation
First, we compare frame-level and utterance-level speaker rep-
resentations, see Table 2. Here, we use a DNN as described in
Fig. 1 with a softmax layer and trained on train 2M (Table 1)
with 50% dropout [26] in the linear layer. The utterance-level
approach outperforms the frame-level approach by 30%. Score
normalization gives a substantial performance boost (up to 20%
relative) in either case. For comparison, two i-vector baselines

Table 2: Equal error rates for frame-level and utterance-level
speaker representations.

EER (%)
level system raw t-norm
frame i-vector [6] 5.77 5.11

i-vector+PLDA [27] 4.66 4.89
DNN, softmax [4] 3.86 3.32

utterance DNN, softmax 2.90 2.28

are shown. The first baseline is based on [6], and uses 13 PLPs
with first-order and second-order derivatives, 1024 Gaussians,
and 300-dimensional i-vectors. The second baseline is based
on [27] with 150 eigenvoices. The i-vector+PLDA baseline
should be taken with a grain of salt as the PLDA model was
only trained on a subset of the 2M train data set (4k speakers
and 50 utterances per speaker) due to limitations of our current
implementation.1 Also, this baseline does not include other re-
fining techniques such as ”uncertainty training” [10] that have
been reported to give substantial additional gains under certain

1However, training with only 30 utterances per speaker gives almost
the same results.



conditions. Note that compared to [15], we have improved our
d-vectors significantly [4].

5.3. Softmax vs. End-to-End Loss
Next, we compare the softmax loss (Section 2) and end-to-end
loss (Section 4) for training utterance-level speaker representa-
tions. Table 3 shows the equal error rates for the DNN in Fig. 1.
If trained on the small training set (train 2M), the error rates on
the raw scores are comparable for the different loss functions.
While dropout gives a 1% absolute gain for softmax, we did not
observe a gain from dropout for the end-to-end loss. Similarly,
t-normalization helps by 20% for softmax, but not at all for the
end-to-end loss. This result is in agreement with the degree of
consistency between the training loss and the evaluation met-
ric. In particular, the end-to-end approach assuming a global
threshold in training (see Eq. (1)), can implicitly learn normal-
ized scores that are invariant under different noise conditions
etc. and makes score normalization redundant. When using the
softmax DNN for initialization of the end-to-end training, the
error rate is reduced from 2.86% to 2.25%, suggesting an esti-
mation problem.

If trained on the larger training set (train 22M), the end-to-
end loss clearly outperforms softmax, see Table 3. To reason-
ably scale the softmax layer to 80k speaker labels, we employed
candidate sampling, similar to [20]. Again, t-normalization
helps by 20% for softmax and softmax can catch up with the
other losses, which do not benefit from t-normalization. The
initialization for end-to-end training (random vs. ”pre-trained”
softmax DNN) does not make a difference in this case.

Although the step time for the end-to-end approach is larger
than for softmax with candidate sampling because the speaker
model is computed on the fly, the overall convergence times are
comparable.

Table 3: Equal error rates for different losses, ? is with candi-
date sampling.

EER (%), raw / t-norm
loss train 2M train 22M
softmax 2.90 / 2.28 2.69 / 2.08?

end-to-end 2.86 / 2.85 2.04 / 2.14

The optimal choice of the number of utterances used to es-
timate the speaker model in training, referred to as the speaker
model size, depends on the (average) number of enrollment
utterances. In practice, however, smaller speaker model sizes
may be more attractive to reduce the training time and make the
training harder. Fig. 4 shows the dependency of the test equal
error rate on the speaker model size, i.e., the number of utter-
ances used to estimate the speaker model. There is a relatively
broad optimum around a model size of 5 with 2.04% equal error
rate, compared to 2.25% for a model size of 1. This model size
is close to the true average model size, which is 6 for our en-
rollment set. Similar trends are observed for the other configu-
rations in this paper (not shown). This indicates the consistency
of the proposed training algorithm with the verification protocol
and suggests that task-specific training tends to be better.

5.4. Feedforward vs. Recurrent Neural Networks
So far we focused on the ”small footprint” DNN in Fig. 1 with
one locally-connected and three fully-connected hidden layers.
Next, we explore larger and different network architectures, re-
gardless of their size and computational complexity. The results
are summarized in Table 4. Compared to the small footprint
DNN, the ”best” DNN uses an additional hidden layer and gives
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Figure 4: Speaker model size vs. equal error rate (EER).

a 10% relative gain. The LSTM in Fig. 3 adds another 30% gain
over this best DNN. The number of parameters is comparable
to that of the DNN but the LSTM involves about ten times more
multiplications and additions. More hyperparameter tuning will
hopefully bring the computational complexity further down to
make it feasible. Slightly worse error rates are achieved with
the softmax loss (using t-normalization, candidate sampling,
dropout, and possibly early stopping, which were all not needed
for the end-to-end approach). On train 2M, we observed similar
relative gains in error rate over the respective DNN baselines.

Table 4: Equal error rates for different model architectures
using end-to-end training, † is with t-norm score normalization
and trained only on the smaller training set.

EER (%)
frame-level DNN baseline 3.32†

DNN, ”small footprint” 2.04
DNN, ”best” 1.87
LSTM 1.36

6. Summary & Conclusion

We proposed a novel end-to-end approach to speaker verifica-
tion, which directly maps the utterance to a score and jointly
optimizes the internal speaker representation and the speaker
model using the same loss for training and evaluation. Assum-
ing sufficient training data, the proposed approach improved our
best small footprint DNN baseline from over 3% to 2% equal
error rate on our internal ”Ok Google” benchmark. Most of
the gain came from the utterance-level vs. frame-level mod-
eling. Compared to other losses, the end-to-end loss achieved
the same or slightly better results but with fewer additional con-
cepts. In case of softmax, for example, we obtained compara-
ble error rates only when using score normalization at runtime,
candidate sampling to make training feasible, and dropout in
training. Furthermore, we showed that the equal error rate can
further be reduced to 1.4% using a recurrent neural network in-
stead of a simple deep neural network, although at higher com-
putational runtime cost. By comparison, a reasonable but not
fully state-of-the-art i-vector/PLDA system gave 4.7%. Clearly,
more comparative studies are needed. Nevertheless, we believe
that our approach demonstrates a promising new direction for
big data verification applications.
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