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Abstract—This paper presents an extension of our previous
work which proposes a new speaker representation for speaker
verification. In this modeling, a new low dimensional speaker- and
channel-dependent space is defined using a simple factor analysis.
This space is named the total variability space because it models
both speaker and channel variabilities. Two speaker verification
systems are proposed which use this new representation. The
first system is a Support-Vector- Machine-based system that uses
the cosine kernel to estimate the similarity between the input
data. The second system directly uses the cosine similarity as
the final decision score. We tested three channel compensation
techniques in the total variability space, which are: Within-
Class CovarianceNormalization (WCCN), Linear Discriminate
Analysis (LDA), and Nuisance Attribute Projection (NAP). We
found that the best results are obtained when LDA is followed by
WCCN. We achieved an EER of 1.12% and MinDCF of 0.0094
using the cosine distance scoring on the male English trials of the
core condition of the NIST 2008 Speaker Recognition Evaluation
dataset. We also obtained 4% absolute EER improvement for
both-gender trials on the 10sec-10sec condition compared to the
classical joint factor analysis scoring.

Index Terms—Joint Factor Analysis, Total Variability Space,
Support Vector Machines, Cosine Distance Scoring.

I. INTRODUCTION

Over recent years, Joint Factor Analysis (JFA) [1], [2],
[3] has demonstrated state-of-the-art performance for text-
independent speaker detection tasks in the NIST speaker
recognition evaluations (SREs). JFA proposes powerful tools
to model the inter-speaker variability and to compensate for
channel/session variability in the context of Gaussian Mixture
Models (GMM)[4].

At the same time the application of Support Vector Ma-
chines (SVM) in GMM supervector space [5] yields interesting
results, especially when Nuisance Attribute Projection (NAP)
is applied to deal with channel effects. In this approach, the
kernel used is based on a linear approximation of the Kullback-
Leibler (KL) distance between two GMMs. The speaker GMM
mean supervectors were obtained by adapting the Univer-
sal Background Model (UBM) mean supervector to speaker
frames using Maximum A Posteriori (MAP) adaptation [4].

Manuscript received October 15; revised March 3. This work was carried
out when the first author was with Centre de recherche informatique de
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In [6], [7], we proposed a new way of combining JFA and
Support Vector Machines (SVM) for speaker verification. It
consists in directly using the speaker factors estimated with
JFA as input to the SVM. We tested several kernels and the
best results were obtained using the cosine kernel [6] when
Within-Class Covariance Normalization (WCCN) [8] is also
used to compensate for residual channel effects in the speaker
factor space.

Recently [6], we carried out an experiment which proves
that channel factors estimated using JFA, which are supposed
to model only channel effects, also contain information about
speakers. Based on this, we proposed a new speaker verifica-
tion system based on factor analysis as a feature extractor [9].
The factor analysis is used to define a new low-dimensional
space named total variability space. In this new space, a given
speech utterance is represented by a new vector named total
factors (we also refer to this vector as “i-vector” in this paper).
The channel compensation in this new approach is carried
out in low-dimensional space, the total variability space, as
opposed to the high-dimensional GMM supervector space 1

for classical JFA [3]. We have proposed two new systems
based on this new speech representation. The first system
is an SVM-based system which uses the cosine kernel to
compute the similarity between the total factors. The second
system directly uses the value of the cosine distance computed
between the target speaker factors and test total factors as a
decision score. In this scoring, we removed the SVM from
the decision process. One important characteristic of this
approach is that there is no speaker enrollment, unlike in other
approaches like SVM and JFA, which makes the decision
process faster and less complex. This paper presents more
details about how these two new systems were built and
shows how the channel compensation techniques are used in
order to remove the nuisance direction from these new total
factor vectors. The best results are obtained with the Linear
Discriminant Analysis (LDA) and WCCN combination which
uses the cosine kernel. The motivation for using LDA is to
maximize the variance between speakers and minimize the
intra-speaker variance, which is the important point in speaker
verification.

The outline of the paper is as follows. We first describe the
JFA approach in Section II. Section III presents the total vari-
ability space, the two new speaker verification systems and all
proposed channel compensation techniques. The experiments
and results are given in section IV. Section V concludes the
paper.

1A supervector is composed by stacking the mean vectors from a GMM.
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II. JOINT FACTOR ANALYSIS

In JFA [1], [2], [3], a speaker utterance is represented by a
supervector (M ) that consists of additive components from
a speaker and a channel/session subspace. Specifically, the
speaker-dependent supervector is defined as

M = m + V y + Ux + Dz, (1)

where m is a speaker- and session-independent supervector
(generally from a Universal Background Model (UBM)), V
and D define a speaker subspace (eigenvoice matrix and diag-
onal residual, respectively), and U defines a session subspace
(eigenchannel matrix). The vectors y, z and x are the speaker-
and session-dependent factors in their respective subspaces
and each is assumed to be a random variable with a Normal
distribution N (0, I). To apply JFA to speaker recognition
consists of first estimating the subspaces (i.e., V , D, U )
from appropriately labelled development corpora and then
estimating the speaker and session factors (i.e., x, y, z) for a
given new target utterance. The speaker-dependent supervector
is given by s = m+V y +Dz. Scoring is done by computing
the likelihood of the test utterance feature vectors against a
session-compensated speaker model (M−Ux). A comparison
among several JFA scorings is given in [10].

III. FRONT-END FACTOR ANALYSIS

In this section, we present two new speaker verification
systems which use factor analysis as a feature extractor. The
first system is based on Support Vector Machines and the
second one uses the cosine distance value directly as a final
decision score.

A. Total variability

The classical JFA modeling based on speaker and channel
factors consists in defining two distinct spaces: the speaker
space defined by the eigenvoice matrix V and the channel
space represented by the eigenchannel matrix U . The approach
that we propose is based on defining only a single space,
instead of two separate spaces. This new space, which we
refer to as the “total variability space”, contains the speaker
and channel variabilities simultaneously. It is defined by the
total variability matrix that contains the eigenvectors with the
largest eigenvalues of the total variability covariance matrix. In
the new model, we make no distinction between the speaker
effects and the channel effects in GMM supervector space.
This new approach is motivated by the experiments carried out
in [6], which show that the channel factors of the JFA which
normally model only channel effects also contain information
about the speaker. Given an utterance, the new speaker- and
channel-dependent GMM supervector defined by Equation 1
is rewritten as follows:

M = m + Tw, (2)

where m is the speaker- and channel-independent super-
vector (which can be taken to be the UBM supervector),
T is a rectangular matrix of low rank and w is a random
vector having a standard normal distribution N (0, I). The

components of the vector w are the total factors. We refer
to these new vectors as identity vectors or i-vectors for short.
In this modeling, M is assumed to be normally distributed
with mean vector m and covariance matrix TT t. The process
of training the total variability matrix T is exactly the same
as learning the eigenvoice V matrix (see [11]), except for one
important difference: in eigenvoice training, all the recordings
of a given speaker are considered to belong to the same
person; in the case of the total variability matrix however,
a given speaker’s entire set of utterances are regarded as
having been produced by different speakers (we pretend that
every utterance from a given speaker is produced by different
speakers). The new model that we propose can be seen as
a simple factor analysis that allows us to project a speech
utterance onto the low-dimensional total variability space.

The total factor w is a hidden variable, which can be defined
by its posterior distribution conditioned to the Baum-Welch
statistics for a given utterance. This posterior distribution
is a Gaussian distribution (see [11], Proposition 1) and the
mean of this distribution corresponds exactly to our i-vector.
The Baum-Welch statistics used to extract the i-vector are
extracted using the UBM. Suppose we have a sequence of L
frames {y1, y2, ..., yL} and an UBM Ω composed of C mixture
components defined in some feature space of dimension F .
The Baum-Welch statistics statistics needed to estimate the
i-vector for a given speech utterance u are obtained by

Nc =
L∑

t=1

P (c|yt,Ω) (3)

Fc =
L∑

t=1

P (c|yt, Ω) yt, (4)

where c = 1, ..., C is the Gaussian index and P (c|xt, Ω)
corresponds to the posterior probability of mixture component
c generating the vector yt. In order to estimate the i-vector, we
also need to compute the centralized first-order Baum-Welch
statistics based on the UBM mean mixture components.

F̃c =
L∑

t=1

P (c|yt, Ω) (yt −mc), (5)

where mc is the mean of UBM mixture component c.
The i-vector for a given utterance can be obtained using the
following equation:

w = (I + T tΣ−1N(u)T )−1.T tΣ−1F̃ (u). (6)

We define N(u) as a diagonal matrix of dimension CF ×
CF whose diagonal blocks are NcI (c = 1, ..., C). F̃ (u) is a
supervector of dimension C × F1 obtained by concatenating
all first-order Baum-welch statistics F̃c for a given utterance
u. Σ is a diagonal covariance matrix of dimension CF ×CF
estimated during factor analysis training (see [11]) and it mod-
els the residual variability not captured by the total variability
matrix T .



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 3

B. Support Vector Machines

Support vector machines are supervised binary classifiers.
Proposed by Vapnik [12], they are based on the idea of
finding, from a set of supervised learning examples X =
{(x1, y1) , (x2, y2) , ..., (xM , yM )}, the best linear separator H
for distinguishing between the positive examples (yi = +1)
and negative examples (yi = −1). The linear separator is
defined by the following function f :

f : RN → R

x 7→ f(x) = wtx + b, (7)

where x is an input vector and (w, b) are the SVM param-
eters chosen during the training. The classification of a new
example x is based on the sign of the function f(x):

h(x) = sign
(
f (x) = wtx + b

)
. (8)

When the kernel function is used, The optimal separator is
given by the following formula:

h (x) =
M∑

i=1

α∗i yik (x, xi) + w∗0 , (9)

where α∗i and w∗0 are the SVM parameters set during the
training step.

1) Cosine Kernel: In our previous experiments with SVM
applied in the speaker factor space [7], we found that the best
results were obtained with the cosine kernel. In the same way,
we use the cosine kernel between two i-vectors w1 and w2.
This kernel is defined by the following equation:

k (w1, w2) =
〈w1, w2〉
‖w1‖ ‖w2‖ . (10)

Note that the cosine kernel consists in normalizing the linear
kernel by the norm of both i-vectors. It considers only the
angle between the two i-vectors and not their magnitudes.
It is believed that non-speaker information (such as session
and channel) affects the i-vector magnitudes so removing
magnitude greatly improves the robustness of the i-vector
system.

C. Cosine distance scoring

In this section, we propose a new scoring technique which
directly uses the value of the cosine kernel between the
target speaker i-vector wtarget and the test i-vector wtest as a
decision score:

score
(
wtarget, wtest

)
=

〈
wtarget, wtest

〉
∥∥∥wtarget

∥∥∥
∥∥∥wtest

∥∥∥
R θ (11)

The value of this kernel is then compared to the threshold
θ in order to take the final decision. The advantage of this
scoring is that no target speaker enrollment is required, unlike
for support vector machines and classical joint factor analysis,
where the target speaker-dependent supervector needs to be

estimated in an enrollement step[3]. Note that both target and
test i-vectors are estimated exactly in the same manner (there is
no extra process between estimating target and test i-vectors),
so the i-vectors can be seen as new speaker recognition
features. In this new modeling, the factor analysis plays the
role of feature extractor rather than modeling speaker and
channel effects [3] (this is the reason for the title of this paper).
The use of the cosine kernel as a decision score for speaker
verification makes the process faster and less complex than
other JFA scoring methods [10].

D. Intersession compensation

In this new modeling based on total variability space, we
propose carrying out channel compensation in the total factor
space rather than in the GMM supervector space, as is the case
in classical JFA modeling. The advantage of applying channel
compensation in the total factor space is the low dimension of
these vectors, as compared to GMM supervectors; this results
in a less expensive computation. We tested three channel
compensation techniques in the total variability space for
removing the nuisance effects. The first approach is Within-
Class Covariance Normalization (WCCN) [8], which was
successfully applied in the speaker factor space in [7]. This
technique uses the inverse of the within-class covariance to
normalize the cosine kernel. The second approach is Linear
Discriminant Analysis (LDA). The motivation for using this
technique is that, in the case where all utterances of a given
speaker are assumed to represent one class, LDA attempts to
define new special axes that minimize the intra-class variance
caused by channel effects, and to maximize the variance
between speakers. The advantage of the LDA approach is
based on discriminative criteria designed to remove unwanted
directions and to minimize the information removed about
variance between speakers. Similar work was carried out
for speaker verification based on a discriminative version
of the nuisance attribute projection algorithm without any
success [13]. The last approach is the Nuisance Attribute
Projection (NAP) presented in [5]. This technique defines a
channel space based on the eigenvectors having the largest
eigenvalues of the within-class covariance computed in the i-
vector background. The new i-vectors are then projected in the
orthogonal complementary channel space, which is the speaker
space.

1) Within-Class Covariance Normalization: WCCN was
introduced by Andrew Hatch in [8]. This approach is applied
in SVM modeling based on linear separation between target
speaker and impostors using a one-versus-all decision. The
idea behind WCCN is to minimize the expected error rate of
false acceptances and false rejections during the SVM training
step. In order to minimize the error rate, the author in [8]
defines a set of upper bounds on the classification error metric.

The optimized solution of this problem is found by minimiz-
ing these upper bounds which, by the same token, minimizes
the classification error. This optimization procedure allows us
to alter the hard-margin separation formalism of the SVM.
The resulting solution is given by a generalized linear kernel
of the form



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 4

k (w1, w2) = wt
1Rw2, (12)

where R is a symmetric, positive semi-definite matrix. The
optimal normalized kernel matrix is given by R = W−1,
where W is the within-class covariance matrix computed over
all the impostors in the training background. We assume that
all utterances of a given speaker belong to one class.

W =
1
S

S∑
s=1

1
ns

ns∑

i=1

(ws
i − ws) (ws

i − ws)
t
, (13)

where ws = 1
ns

∑ns

i=1 ws
i is the mean of i-vectors of each

speaker, S is the number of speakers and ns is number of
utterances of speaker s. In order to preserve the inner-product
form of the cosine kernel, a feature-mapping function ϕ can
be defined as follows:

ϕ (w) = Btw, (14)

where B is obtained through Cholesky decomposition of
matrix W−1 = BBt. In our approach, the WCCN algorithm
is applied to the cosine kernel. The new version of this kernel
is given by the following equations:

k (w1, w2) =
(Btw1)

t (Btw2)√
(Btw1)

t (Btw1)
√

(Btw2)
t (Btw2)

. (15)

The WCCN algorithm uses the within-class covariance
matrix to normalize the cosine kernel functions in order to
compensate for intersession variability, while guaranteeing
conservation of directions in space, in contrast with other
approaches such as NAP [5] and LDA [13].

2) Linear Discriminant Analysis: LDA is a technique for
dimensionality reduction that is widely used in the field of
pattern recognition. The idea behind this approach is to seek
new orthogonal axes to better discriminate between different
classes. The axes found must satisfy the requirement of
maximizing between-class variance and minimizing intra-class
variance. In our modeling, each class is made up of all the
recordings of a single speaker. The LDA optimization problem
can be defined according to the following ratio:

J (v) =
vtSbv

vtSwv
. (16)

This ratio is often referred to as the Rayleigh coefficient for
space direction v. It represents the amount of information ratio
of the between-class variance Sb and within-class variance Sw

which is equivalent to Equation 13, given space direction v.
These are calculated as follows:

Sb =
S∑

s=1

(ws − w) (ws − w)t (17)

Sw =
S∑

s=1

1
ns

ns∑

i=1

(ws
i − ws) (ws

i − ws)
t
, (18)

where ws = 1
ns

∑ns

i=1 ws
i is the mean of i-vectors for

each speaker, S is the number of speakers and ns is the
number of utterances for each speaker s. In the case of i-
vectors, the speaker population mean vector w is equal to
the null vector since, in FA, these i-vectors have a standard
normal distribution w ∼ N (0, I), which has a zero mean
vector. The purpose of LDA is to maximize the Rayleigh
coefficient. This maximization is used to define a projection
matrix A composed by the best eigenvectors (those with
highest eigenvalues) of the general eigenvalue equation:

Sb v = λSw v, (19)

where λ is the diagonal matrix of eigenvalues. The i-vectors
are then submitted to the projection matrix A obtained from
LDA. The new cosine kernel between two i-vectors w1 and
w2 can be rewritten as:

k (w1, w2) =
(Atw1)

t (Atw2)√
(Atw1)

t (Atw1)
√

(Atw2)
t (Atw2)

(20)

3) Nuisance attribute projection: The nuisance attribute
projection algorithm is presented in [5]. It is based on
finding an appropriate projection matrix intended to remove
the nuisance direction. The projection matrix carries out an
orthogonal projection in the channel’s complementary space,
which depends only on the speaker. The projection matrix is
formulated as

P = I −RRt, (21)

where R is a rectangular matrix of low rank whose columns
are the k eigenvectors having the best eigenvalues of the same
within-class covariance matrix (or channel covariance) given
in Equation 13.

These eigenvectors define the channel space. The cosine
kernel based on the NAP matrix is given as follows:

k (w1, w2) =
(Pw1)

t (Pw2)√
(Pw1)

t (Pw1)
√

(Pw2)
t (Pw2)

(22)

where w1 and w2 are two total i-vectors.

IV. EXPERIMENTS

A. Databases

All experiments were carried out on the core condition
of both NIST 2006 speaker recognition evaluation (SRE)
as development dataset and 2008 SRE as test data. The
2006 evaluation set contains 350 males, 461 females, and
51,448 test utterances. For each target speaker model, a five-
minute telephone conversation recording is available contain-
ing roughly two minutes of speech for a given speaker. The
core condition of the NIST 2008 SRE contains both similar
telephone conversation data to 2006 SRE and new interview
data. Our experiments are based only on telephone data for
both training and testing. The core condition of the 2008 SRE
is named short2-short3. It contains 1140 females, 648 males
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and 37050 files. We also carried out experiments in short2-
10sec and 10sec-10sec conditions of the NIST 2008 SRE.
In the first condition, we have one telephone conversation to
enroll the target model and ten seconds of telephone speech
to verify the identity of the speaker. This condition comprises
1140 females, 648 males and 21907 test files. The second
condition is characterized by having a 10-second telephone
speech segment for enrolling the target speaker and also a 10-
second speech segment for testing. it composed also by 1140
females, 648 males and 21907 test files.

In the NIST evaluation protocol [14], we can use all previ-
ous NIST evaluation data and also other corpora to train our
systems. For this purpose, we used all the following datasets
to estimate our system hyperparameters:
• Switchboard :Switchboard II, Phase 2 and 3. Switchboard

II Cellular, Part 1 and 2.
• NIST2004 : NIST 2004 Speaker recognition evaluation.
• NIST2005 : NIST 2005 Speaker recognition evaluation.
• Fisher : Fisher English database Part 1 and 2.

B. Experimental Setup

Our experiments operate on cepstral features, extracted
using a 25 ms Hamming window. Every 10 ms, 19 Mel
Frequency Cepstral Coefficients (MFCC) together with log
energy were calculated. This 20-dimensional feature vector
was subjected to feature warping [15] using a 3 s sliding
window. Delta and delta-delta coefficients were then calculated
using a 5-frame window to produce 60-dimensional feature
vectors.

We used gender-dependent UBMs containing 2048 Gaus-
sians and two gender-dependent joint factor analysis configu-
rations. The first JFA is made up of 300 speaker factors and
100 channel factors only. The second configuration is full:
we added the diagonal matrix D in order to have speaker and
common factors. When the diagonal matrix was estimated, we
used a decoupled estimation of the eigenvoice matrix V and
diagonal matrix D [3]. We used 400 total factors defined by
the total variability matrix T .

The decision scores obtained with the JFA scoring were
normalized using zt-norm. We used 300 t-norm models for
female trials. We used around 1000 z-norm utterances for
females. In our SVM system, we take 307 female models to
carry out t-normalization and 1292 female SVM background
impostor models to train the SVM.

Table I summarizes all corpora that are used to estimate
the UBM, JFA hyperparameters, total variability matrix, LDA,
NAP, WCCN, SVM background speakers training. The choice
of training each component of our systems on a specific dataset
is based on the results obtained on the development dataset,
which is from the NIST 2006 SRE.

All the results are reported on the female part of the core
condition of the NIST 2006 and 2008 SRE telephone data.

C. SVM-FA

1) Within-class Covariance Normalization: The experi-
ments carried out in this section compare the results obtained
with and without applying WCCN to the total variability

TABLE I
CORPORA USED TO ESTIMATE THE UBM, TOTAL VARIABILITY MATRIX

(T ), LDA AND WCCN

Switchboard NIST 2004 NIST 2005
UBM X X X

V X X
Full JFA D X

U X X X

Small JFA V X X X
U X X X

JFA zt-norm X X X
T X X X

WCCN X X
NAP X X X
LDA X X X

SVM-impostor X X
SVM-tnorm X

factors. We also present results given by the JFA scoring,
based on integration over channel factors [1], [2]. The results
are given in Table II.

TABLE II
WCCN PERFORMANCE IN THE TOTAL FACTOR SPACE. THE RESULTS ARE

GIVEN FOR EER AND MINDCF ON THE FEMALE PART OF THE NIST 2006
AND 2008 SRE CORE CONDITION.

English trials All trials
NIST 2006 SRE EER DCF EER DCF

JFA: s = m + V y 1.74% 0.012 3.84% 0.022
SVM-FA 3.29% 0.021 5.39% 0.031
SVM-FA: with WCCN 1.87% 0.011 2.76% 0.017

NIST 2008 SRE EER DCF EER DCF
JFA : s = m + V y 3.68% 0.015 6.3% 0.032
SVM-FA 5.33% 0.020 8.40% 0.040
SVM-FA: with WCCN 4.73% 0.018 7.32% 0.035

If we compare the results with and without WCCN, we find
that its use helps to compensate for channel variability in the
total factor space. This improvement was very marked in the
NIST 2006 SRE, especially for the all-trials condition. We
obtained an EER of 2.76%, which represents a 1% absolute
improvement compared to the JFA scoring. However, when
we compare the same performance for NIST 2008 SRE data,
we can conclude that the classical JFA scoring based on
integration over channel factors [1], [2] yields the best results.
It can be explained by the fact that the WCCN estimated only
on the NIST2004 and 2005 SRE dataset is not appropriate for
channel compensation on the NIST 2008 SRE.

2) Linear Discriminant Analysis: This section presents the
results obtained with linear discriminant analysis applied to
the i-vectors in order to compensate for channel effects. We
carried out several experiments using different LDA dimension
reductions, in order to show the effectiveness of this technique
in removing the unwanted nuisance directions. The results
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given in table III were obtained for NIST 2006 SRE dataset.

TABLE III
THE LDA DIMENSIONALITY REDUCTION RESULTS ARE GIVEN FOR EER

AND MINDCF ON THE FEMALE ENGLISH TRIALS OF THE CORE
CONDITION OF THE NIST 2006 SRE.

EER DCF
JFA : s = m + V y 1.74% 0.012
No channel compensation 3.29% 0.021
WCCN 1.87% 0.011
LDA dim = 400 2.38% 0.013
LDA dim = 350 2.25% 0.013
LDA dim = 300 2.31% 0.013
LDA dim = 250 2.38% 0.011
LDA dim = 200 2.56% 0.013
LDA dim = 150 2.65% 0.013
LDA dim = 100 2.84% 0.013

These results show the effectiveness of using LDA to
compensate for channel effects. A first important remark is
that application of LDA to rotate space for minimizing the
within-speaker variance, without any dimensionality reduction
(dim = 400), improves performance in the case of the cosine
kernel. If we try to minimize the DCF as requested in the
NIST evaluation, the best results are obtained by reducing
dimensionality to (dim = 250). When no channel compen-
sation is applied, we obtain a DCF value of 0.021. Applying
a dimensional reduction from size 400 to 250 significantly
improves performance, as shown by the resulting DCF value
of 0.011. However, if we compare the EER obtained using
LDA with that obtained using WCCN, we find that the latter
approach gives better results than the former. This observation
motivated us to combine both techniques. We performed
several experiments where, in a preliminary step, we applied
LDA to remove nuisance directions; thereafter we used WCCN
in the reduced space in order to normalize the new cosine
kernel. During the training step, we began by training the LDA
projection matrix on all data used for training the matrix T ;
then, we projected the same data in the reduced space in order
to compute the within-class covariance matrix. Figure 1 shows
the value of MinDCF versus the number of spatial dimensions
defined by the LDA, in order to find the optimal dimension
of the new space. These results were computed on the NIST
2006 SRE dataset.

The best MinDCF achieved using the combination of LDA
and WCCN is 0.010 for English trials and 0.016 for all trials.
These results were obtained with a new space dimension
of dim = 200. Table IV compares these results with those
obtained with JFA scoring, WCCN alone and LDA alone on
the NIST 2006 and 2008 SRE datasets. We first note that
applying WCCN in the LDA-projected space helps to improve
performance as compared to LDA alone. If we compare the
performance of the LDA and WCCN combination with that
obtained with JFA scoring and WCCN alone, we find that
this combination achieves the best MinDCF in the English
and all-trials conditions of both the NIST 2006 and 2008 SRE
datasets. We can see that this combination also yields the best

100 150 200 250 300 350 400
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M
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Fig. 1. MinDCF on the NIST 2006 SRE dataset of the SVM-FA system
based on LDA technique.

EER in the all-trials condition of both datasets.

TABLE IV
COMPARISON OF RESULTS BETWEEN JFA SCORING AND SEVERAL

SVM-FA CHANNEL COMPENSATION TECHNIQUES BASED ON LDA. THE
RESULTS ARE GIVEN FOR EER AND MINDCF ON THE FEMALE PART OF

THE CORE CONDITION OF THE NIST 2006 AND 2008 SRE.

English trials All trials
NIST 2006 SRE EER DCF EER DCF

JFA : s = m + V y 1.74% 0.012 3.84% 0.022
WCCN 1.87% 0.011 2.76% 0.017
LDA (250) 2.38% 0.011 3.31% 0.018
LDA (200) + WCCN 2.05% 0.010 2.72% 0.016

NIST 2008 SRE EER DCF EER DCF
JFA : s = m + V y 3.68% 0.015 6.3% 0.032
WCCN 4.73% 0.018 7.32% 0.035
LDA (200) + WCCN 3.95% 0.014 6.09% 0.032

Figures 2 and 3 show respectively the impact of projecting
the i-vectors of five female speakers using the two-dimensional
LDA projection matrix only and the impact of LDA followed
by WCCN. Two remarks are in order for both figures. First,
the application of WCCN in the projected two-dimensional
space helps to reduce channel effects by minimizing the intra-
speaker variability. Secondly, there is marked dilatation of the
i-vectors for each speaker from the origin of the space which
can be not compensated for by using the LDA and WCCN
combination. This dilatation can be removed by the cosine
kernel (normalizing by the length). This behavior explains the
extraordinary results obtained with the cosine kernel in i-vector
space and also in speaker factor space [6], [7].

3) Nuisance attribute projection: The same study as LDA
before was carried out in order to show the performance of the
NAP technique for compensating for channel effects. We begin
by presenting the results obtained using NAP based on several
corank numbers which represent the number of removed
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Fig. 2. i-vectors of five speakers after two dimensions LDA projection
(w1, w2).
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Fig. 3. i-vectors of five speakers after two dimensions LDA and WCCN
projection (w1, w2).

dimensions. Table V gives the results of these experiments
on the female trials of the core condition of the NIST 2006
SRE.

TABLE V
THE RESULTS OBTAINED WITH SEVERAL NAP CORANKS. THESE RESULTS
ARE GIVEN FOR EER AND MINDCF ON THE FEMALE ENGLISH TRIALS OF

THE CORE CONDITION OF THE NIST 2006 SRE.

EER MinDCF
JFA : s = m + V y 1.74% 0.012
No channel compensation 3.29% 0.021
WCCN 1.87% 0.011
NAP corank = 10 2.92% 0.017
NAP corank = 60 2.63% 0.014
NAP corank = 100 2.50% 0.013
NAP corank = 150 2.29% 0.011
NAP corank = 200 2.29% 0.011
NAP corank = 250 2.19% 0.013
NAP corank = 300 2.83% 0.014

These results prove that application of nuisance attribute
projection to compensate for channel effects helps to improve
the performance of SVM applied to the i-vector space. We
decreased the MinDCF for the English trials from 0.021 when
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Fig. 4. MinDCF for the NIST 2006 SRE of the SVM-FA system based on
the NAP technique.

no channel compensation was applied, to 0.011 when NAP
corank is equal to 200. As was the case for LDA, we also
found that the WCCN gave better results than NAP, which
again persuaded us to combine NAP and WCCN. To train
this new approach, we started by first training the nuisance
attribute projection matrix in the same manner as before using
all the data used in training the total variability matrix (see
previous experimental setup section), then we computed the
WCCN matrix in the new projected space. The MinDCF of
this combination based on varying the number of the NAP
corank is given in Figure 4.

The best MinDCF achieved using this combination, based
on the NAP and WCCN, is 0.010 for English trials and 0.016
for all trials. These results were obtained with NAP corank
equal to 150. Table VI compares these results with those
obtained with JFA scoring and WCCN for both NIST 2006 and
2008 SRE datasets. The same remark as in LDA is applicable
to the NAP case, which is that the combination of WCCN
and NAP improves the performance compared to NAP applied
alone. If we compare the performance of the NAP and WCCN
combination with that obtained with JFA scoring and WCCN
alone for both datasets, we find that this combination achieved
the best MinDCF for both datasets. However, the best EER in
both datasets are obtained with JFA scoring.

Table VII summarizes the results obtained using JFA scoring
and SVM-FA based on WCCN, the LDA and WCCN combi-
nation, and NAP combined with WCCN. These results show
that the LDA and WCCN combination gives the best DCF
(0.014) in English trials and also the best EER in all trials;
however, the NAP and WCCN combination yielded the best
DCF in all trials.

4) Results for both genders: In this section, we present the
results for both genders obtained by applying support vector
machines in total factor space. We used exactly the same
universal background model and factor analysis configuration
(400 total factors) as in the last two previous experiments.
The only difference lies in the amount of data used to train
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TABLE VI
COMPARISON OF RESULTS BETWEEN JFA SCORING AND SEVERAL

SVM-FA CHANNEL COMPENSATION TECHNIQUES BASED ON NAP. THE
RESULTS ARE GIVEN FOR EER AND MINDCF ON THE FEMALE PART OF

THE CORE CONDITION OF THE NIST 2006 AND 2008 SRE.

English trials All trials
NIST 2006 SRE EER DCF EER DCF

JFA : s = m + V y 1.74% 0.012 3.84% 0.022
WCCN 1.87% 0.011 2.76% 0.017
NAP (150) 2.29% 0.011 3.38% 0.017
NAP (150) + WCCN 1.83% 0.010 2.66% 0.015

NIST 2008 SRE EER DCF EER DCF
JFA : s = m + V y 3.68% 0.015 6.3% 0.032
WCCN 4.73% 0.018 7.32% 0.035
NAP (150) + WCCN 4.73% 0.015 6.70% 0.030

TABLE VII
SUMMARY OF RESULTS OBTAINED WITH JFA SCORING AND SEVERAL
SVM-FA CHANNEL COMPENSATION TECHNIQUES. THE RESULTS ARE
GIVEN FOR EER AND MINDCF ON THE FEMALE PART OF THE CORE

CONDITION OF THE NIST 2008 SRE.

English trials All trials
EER DCF EER DCF

JFA : s = m + V y 3.68% 0.015 6.3% 0.032
WCCN 4.73% 0.018 7.32% 0.035
LDA (200)+WCCN 3.95% 0.014 6.09% 0.032
NAP (150)+WCCN 4.73% 0.015 6.70% 0.030

the total variability matrix T for both genders. We added the
Fisher English database Part 1 and 2 to the previous used
data, namely LDC releases of Switchboard II, Phases 2 and 3;
Switchboard Cellular, Parts 1 and 2; and NIST 2004-2005 SRE
datasets, in order to capture a greater extent of variability. Note
that Fisher corpora are only used to train the total variability
matrix and not JFA parameters. The reason is that, in JFA
training [3], we used only speakers that have minimum five
recordings. However, in Fisher dataset, there are very few
speakers that have five recordings and more. The most of
these speakers have maximum three recordings. Adding Fisher
to train the JFA parameters proves to be not useful. This is
not the case in our Total variability matrix training because
we used speakers that have minimum two recordings (Fisher
dataset contains a lot of a speakers that have minimum two
recordings). We applied LDA and NAP, in combination with
WCCN, to compensate for channel effects. We used the same
female impostors to estimate the SVM model and to carry out
the score normalization as described in previous experiments.
For Male gender, We used 1007 impostors to train the SVM.
These impostors are taken from the same dataset as the UBM
training except for the NIST 2005 SRE dataset. We applied t-
norm score normalization based on 204 impostors taken from
the NIST 2005 SRE dataset. The experiments were carried
out on the telephone data of the core condition of the NIST
2008 SRE dataset. Table VIII compares results between SVM-
FA and JFA scoring based on both configurations (with and

without common factors).

TABLE VIII
COMPARISON OF RESULTS BETWEEN JFA SCORING AND SEVERAL

SVM-FA CHANNEL COMPENSATION TECHNIQUES. THE RESULTS ARE
GIVEN FOR EER AND MINDCF ON BOTH GENDERS OF THE CORE

CONDITION OF THE NIST 2008 SRE DATASET.

English trials All trials
Female gender EER DCF EER DCF

JFA: s=m+Vy+Dz 3.17% 0.015 6.15% 0.032
JFA: s=m+Vy 3.68% 0.015 6.38% 0.032

LDA (200) + WCCN 3.68% 0.015 6.02% 0.031
NAP (150) + WCCN 3.95% 0.015 6.36% 0.032

Male gender EER DCF EER DCF
JFA: s=m+Vy+Dz 2.64% 0.011 5.15% 0.027

LDA (200) + WCCN 1.28% 0.009 4.57% 0.024
NAP (150) + WCCN 1.51% 0.010 4.58% 0.024

Inspection of the tabulated results reveals that, in the case of
the SVM-FA system, the LDA/WCCN combination achieves
better performance than the NAP/WCCN combination. Adding
more training data to the total variability factor space improves
the performance of the SVM-FA system. The EER values
for the NIST 2008 SRE English trials decreases from 3.95%
(Table IV) to 3.68% (Table VIII) when LDA and WCCN are
applied. Finally, the SVM-FA achieves better results than the
full configuration of the joint factor analysis scoring (with
speaker and common factors), especially in male trials. We
obtain 1.23% absolute EER improvement For the English trials
of the NIST 2008 SRE data. In female trials, the JFA achieves
a better English trials EER (a value of 3.17% in EER for JFA
scoring compared to 3.68% for the SVM-FA); however, the
SVM-FA produced a better EER in all trials (6.02% in EER
for SVM-FA compared to 6.15% in EER for JFA scoring). In
conclusion, the application of SVM in the total factor space
leads to remarkable results compared to those obtained with
the full JFA configuration (with common factors), despite the
absence of common factors in our new SVM-FA modeling.
The results obtained with the cosine kernel applied to these
new i-vectors show that there is a quite linear separation
between speakers in that space. In the next section, we propose
a new scoring based on the cosine kernel values as decision
scores.

D. Cosine Distance scoring

Cosine distance scoring is based on the same total variability
matrix and i-vectors as the previous SVM-FA system (where
the Fisher data are used to train the total variability matrix T ).
In this modeling, the scores are normalized using the zt-norm
technique based on the same t-norm model impostors as in the
SVM-FA system. Impostors used for training SVM are used
as z-norm utterances in this new system. We used the same
LDA and WCCN combination matrix as the SVM-FA system.

The experiments were carried out on the short2-short3 (core
condition), short2-10sec and 10sec-10sec conditions of the
NIST 2008 SRE dataset. We used exactly the same cosine
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distance scoring and channel compensation for all these con-
ditions.

1) Short2-short3 condition: Table IX presents the results
obtained with cosine distance, SVM-FA and JFA scorings
for both genders on the core condition for telephone data
of the NIST 2008 SRE dataset. We used the same channel
compensation techniques as in the SVM-FA experiments.

TABLE IX
COMPARISON OF RESULTS FROM JFA, SVM-FA AND COSINE DISTANCE

SCORING WITH LDA(DIM=200)+WCCN CHANNEL COMPENSATION
TECHNIQUES. THE RESULTS ARE GIVEN AS EER AND DCF ON BOTH
GENDER OF THE CORE CONDITION OF THE NIST 2008 SRE DATASET

English trials All trials
EER DCF EER DCF

JFA 3.17% 0.015 6.15% 0.032
Female SVM-FA 3.68% 0.015 6.02% 0.031

cosine 2.90% 0.012 5.76% 0.032
JFA 2.64% 0.011 5.15% 0.027

Male SVM-FA 1.28% 0.009 4.57% 0.024
cosine 1.12% 0.009 4.48% 0.024

The results given in this table show that cosine distance
scoring based on i-vectors definitively gave the best results in
all conditions of the NIST evaluation compared to JFA scoring.
If we compare these results with those obtained with the
SVM-FA system, we find that cosine distance scoring achieves
the best results, especially for female trials. Using cosine
distance scoring, we obtained an EER of 2.90% and MinDCF
of 0.0124 for English trials versus an EER of 3.68% and
MinDCF of 0.0150 for the SVM-FA system. An explanation
of these results may be that the background speakers used
to train our SVM might not be adequate. Recently [16], the
authors proposed a new SVM background speaker selection
algorithm for speaker verification. Applying this technique
in our modeling will probably improve the performance of
the SVM. However, for simplicity, we keep using the cosine
distance scoring rather than SVM. Figure 5 and 6 shows a DET
curve comparison between classical JFA scoring, SVM-FA
combination and cosine distance scoring on the core condition
of the NIST 2008 SRE.

2) Short2-10sec condition: Table X presents the results
obtained with cosine distance scoring, SVM-FA system and
JFA scoring for both genders. The experiments are carried
out on telephone data of the short2-10sec condition. In this
condition, we have around 2 min of speech to enroll the
speaker and 10 s for testing. We used the same channel
compensation techniques as in the SVM-FA experiments.

This Table reveals that cosine distance scoring achieves
better results than the full joint factor analysis configuration
(with speaker and common factors), especially in female trials.
We obtain around 2% absolute improvement in EER for the
English trials. The cosine distance also gives in general better
results than SVM-FA. However, the improvement is barely
significant for male trials compared to the female trials.

3) 10sec-10sec condition: Table XI presents the results
obtained with cosine distance scoring, full JFA scoring and
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Fig. 5. Detcurves comparison between JFA scoring, SVM-FA and cosine
distance. The results are given in English and all trials of female part of core
condition of the NIST 2008 SRE.
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Fig. 6. Detcurves comparison between JFA scoring, SVM-FA and cosine
distance. The results are given in English and all trials of male part of core
condition of the NIST 2008 SRE.

SVM-FA for both genders on the 10sec-10sec condition for
NIST 2008 SRE data. In this condition, we have only 10
seconds of speech to enroll the target speaker model and
also 10 seconds for testing, which makes the recognition
process more difficult. We used the same LDA and WCCN
combination to compensate for channel effects as in the SVM-
FA experiments.

The results given in this table show an absolute improve-
ment of around 4% in the EER for both genders. The EER for
the English trials goes from 16.01% to 12.19% for females and
15.20% to 11.09% for males. We also note a quite significant
improvement in DCF. To our knowledge, these results are
the best results ever obtained in the 10sec-10sec condition.
It is not easy to explain these extraordinary results obtained
with cosine distance scoring. A possible explanation is that
in our modeling, we have few parameters to estimate: only
400 total factors compared to JFA, where common factors
are also used. This means that we need fewer speech frames
to estimate the i-vectors compared to the full JFA. However,
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TABLE X
COMPARISON OF RESULTS FROM JFA, SVM-FA AND COSINE DISTANCE

SCORING WITH LDA(DIM=200)+WCCN CHANNEL COMPENSATION
TECHNIQUES. THE RESULTS ARE GIVEN AS EER AND DCF ON BOTH

GENDERS OF SHORT2-10SEC CONDITION OF THE NIST 2008 SRE
DATASET

English trials All trials
EER DCF EER DCF

JFA 7.89% 0.035 11.19% 0.064
Female SVM-FA 7.57% 0.034 10.97% 0.052

cosine 5.91% 0.034 9.59% 0.050
JFA 5.36% 0.027 8.09% 0.038

Male SVM-FA 5.24% 0.030 7.97% 0.038
cosine 5.18% 0.026 7.38% 0.036

TABLE XI
COMPARISON OF RESULTS FROM JFA, SVM-FA AND COSINE DISTANCE
SCORING WITH LDA+WCCN CHANNEL COMPENSATION TECHNIQUES.

THE RESULTS ARE GIVEN AS EER AND DCF ON THE FEMALE TRIALS OF
10SEC-10SEC CONDITION OF THE NIST 2008 SRE DATASET

English trials All trials
EER DCF EER DCF

JFA 16.01% 0.064 17.99% 0.075
Female SVM-FA 14.68% 0.062 17.85% 0.073

cosine 12.19% 0.057 16.59% 0.072
JFA 15.20% 0.057 15.45% 0.068

Male SVM-FA 12.04% 0.058 14,81% 0.069
cosine 11.09% 0.047 14.44% 0.063

The results obtained with small JFA configuration (without
common factor) which are based only on only 400 factors too
(300 speaker factor and 100 channel factor), are also worse
than cosine distance scoring. As a conclusion, may be the
good performances are related to the application of the cosine
scoring on the total factor space.

V. CONCLUSION

This paper presented a new speaker verification system
where factor analysis is used to define a new low-dimensional
space that models both speaker and channel variabilities.
We proposed two new scoring methods based on the cosine
kernel in the new space. The first approach uses a discrim-
inative method, SVM, and the second one uses the cosine
distance values directly as decision scores. The latter approach
makes the decision process less complex because there is
no speaker enrollment as opposed to the classical methods.
In this new modeling, each recording is represented using a
low-dimensional vector named i-vector (for identity vector)
extracted using a simple factor analysis. The main difference
between the classical use of joint factor analysis for speaker
verification and our approach is that we address the channel
effects in this new low-dimensional i-vectors space rather
than in the high-dimensional GMM mean supervector space.
We tested three different techniques to compensate for the
intersession problem: linear discriminant analysis, nuisance

attribute projection and within-class covariance normalization.
The best results were obtained with the combination of LDA
and WCCN. The advantage of using LDA is the removal
of nuisance directions and the maximization of the variance
between the speakers, which is the key point in speaker
verification. The results obtained with cosine distance scoring
outperform those obtained with both SVM-FA and classical
JFA scorings on several NIST evaluation conditions. However,
the cosine scoring system seems to be more powerful and
robust, especially on short duration conditions like 10sec-
10sec of the NIST 2008 SRE dataset, where we achieved an
absolute improvement of 4% on the EER compared to classical
JFA. In future work, we will try to extend the total variability
systems to the case of the microphone and interview data of
the NIST 2008 SRE dataset.
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Verification, Ph.D. thesis, École de Technologie Supérieure, Montreal,
2009.

[7] N. Dehak, P. Kenny, R. Dehak, O. Glembek, P. Dumouchel, L. Burget,
and V. Hubeika, “Support Vector Machines and Joint Factor Analysis for
Speaker Verification,” in IEEE International Conference on Acoustics,
Speech, and Signal Processing, Taipei, Taiwan, April 2009.

[8] A. Hatch, S. Kajarekar, and A. Stolcke, “Within-Class Covariance
Normalization for SVM-Based Speaker Recognition,” in International
Conference on Spoken Language Processing, Pittsburgh, PA, USA,
September 2006.

[9] N. Dehak, R. Dehak, P. Kenny, N. Brummer, P. Ouellet, and P. Du-
mouchel, “Support Vector Machines versus Fast Scoring in the Low-
Dimensional Total Variability Space for Speaker Verification,” in
Interspeech, Brigthon, 2009.

[10] O. Glembek, L. Burget, N. Brummer, and P. Kenny, “Comparaison
of Scoring Methods used in Speaker Recognition with Joint Factor
Analysis,” in IEEE International Conference on Acoustics, Speech, and
Signal Processing, Taipei, Taiwan, April 2009.

[11] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice modeling with
sparse training data,” IEEE Trans. Speech Audio Processing, vol. 13,
no. 3, may 2005.

[12] V.N. Vapnik, The Nature of Statistical Learning, Springer, 1995.



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING 11

[13] R. Vogt, S. Kajarekar, and S. Sridharan, “Discriminat NAP for SVM
Speaker Recognition,” in IEEE Odyssey: The Speaker and Language
Recognition Workshop, Stellenbosch, South Africa, Jan 2008.

[14] “http://www.nist.gov/speech/tests/spk/index.htm,” .
[15] J. Pelecanos and S. Sridharan, “Feature Warping for Robust Speaker

Verification,” in IEEE Odyssey: The Speaker and Language Recognition
Workshop, Crete, Greece, 2001, pp. 213–218.

[16] M. McLaren, B. Baker, R. Vogt, and S. Sridharan, “Improved SVM
Speaker Verification through Data-Driven Background Dataset Collec-
tion,” in IEEE-ICASSP, Taipei, Taiwan, 2009.


