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ABSTRACT
In this paper we investigate the use of deep neural networks (DNNs)
for a small footprint text-dependent speaker verification task. At de-
velopment stage, a DNN is trained to classify speakers at the frame-
level. During speaker enrollment, the trained DNN is used to extract
speaker specific features from the last hidden layer. The average of
these speaker features, or d-vector, is taken as the speaker model.
At evaluation stage, a d-vector is extracted for each utterance and
compared to the enrolled speaker model to make a verification deci-
sion. Experimental results show the DNN based speaker verification
system achieves good performance compared to a popular i-vector
system on a small footprint text-dependent speaker verification task.
In addition, the DNN based system is more robust to additive noise
and outperforms the i-vector system at low False Rejection operat-
ing points. Finally the combined system outperforms the i-vector
system by 14% and 25% relative in equal error rate (EER) for clean
and noisy conditions respectively.

Index Terms— Deep neural networks, speaker verification.

1. INTRODUCTION

Speaker verification (SV) is the task of accepting or rejecting the
identity claim of a speaker based on the information from his/her
speech signal. Based on the text to be spoken, the SV systems can be
classified into two categories, text-dependent and text-independent.
Text-dependent SV systems require the speech to be produced from
a fixed or prompted text phrase, while the text-independent SV sys-
tems operate on unconstrained speech. In this paper, we focus on a
small footprint text-dependent SV task using fixed-text, although the
proposed technique may be extended to text-independent tasks.

The SV process can be divided into three phases:

• Development: background models are trained from a large
collection of data to define the speaker manifold. Background
models vary from simple Gaussian mixture model (GMM)
based Universal Background Models (UBMs) [1] to more so-
phisticated Joint Factor Analysis (JFA) based models [2, 3, 4].

• Enrollment: new speakers are enrolled by deriving speaker
specific information to obtain speaker-dependent models.
Speakers in the enrollment and development sets are not over-
lapped.

• Evaluation: each test utterance is evaluated using the enrolled
speaker models and background models. A decision is made
on the identity claim.

∗Research conducted as an intern at Google.

A wide variety of SV systems have been studied using different
statistical tools for each of the three phases in verification. The state-
of-the-art SV systems are based on i-vectors [5] and Probabilistic
Linear Discriminant Analysis (PLDA). In these systems, JFA is used
as a feature extractor to extract a low-dimensional i-vector as the
compact representation of a speech utterance for SV.

Motivated by the powerful feature extraction capability and re-
cent success of deep neural networks (DNNs) applied to speech
recognition [6], we propose a SV technique based on DNN as the
speaker feature extractor. A new type of DNN-based background
model is used to directly model the speaker space. A DNN is trained
to map frame-level features in a given context to the correspond-
ing speaker identity target. During enrollment, the speaker model
is computed as the average of activations derived from the last DNN
hidden layer, which we refer to as a deep vector or “d-vector”. In the
evaluation phase, we make decisions using the distance between the
target d-vector and the test d-vector, similar to i-vector SV systems.
One significant advantage of using DNNs for SV is that it is easy to
integrate them into a state-of-the-art speech recognition system since
they can share the same DNN inference engine and simple filterbank
energies frontend.

The rest of this paper is organized as follows. In Section 2, pre-
vious related work on SV is described. In Section 3 we describe the
proposed DNN-based SV system. Section 4 shows the experimental
results for a small footprint text-dependent SV system. The DNN-
based SV system is compared with an i-vector system in both clean
and noisy conditions. We also evaluate the performance with dif-
ferent numbers of enrollment utterances and describe improvements
from combination of two systems. Finally, Section 5 concludes the
paper and discusses future work.

2. PREVIOUS WORK

The combination of i-vector and PLDA [5, 7] has become the dom-
inant approach for text-independent speaker recognition. The i-
vector represents an utterance in a low-dimensional space named
total variability space. Given an utterance, the speaker- and session-
dependent GMM supervector is defined as follows:

M = m + Tw (1)

where m is the speaker- and session-independent supervector, usu-
ally taken to be the UBM supervector, T is a rectangular matrix of
low rank, referred to as the total variability matrix (TVM), and w is
a random vector with a standard normal distribution N(0, I). The
vector w contains the total factors and is referred to as the i-vector.
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Fig. 1. The background DNN model for speaker verification.

Moreover, the PLDA on the i-vectors can decompose the total vari-
ability into speaker and session variability more effectively com-
pared to JFA. The i-vector-PLDA technique and its variants have
also been successfully used in text-dependent speaker recognition
tasks [8, 9, 10].

In past studies, neural networks have been investigated for
speaker recognition [11, 12]. Being nonlinear classifiers, neural net-
works can discriminate the characteristics of different speakers. The
neural network was typically used as a binary classifier of target and
non-target speakers, or multicategory classifiers for speaker identi-
fication purposes. Auto-associative neural networks (AANN) [13]
were proposed to use the reconstruction error difference computed
from the UBM-AANN and speaker specific AANN as the verifica-
tion score. Multi-layer perceptrons (MLPs) with a bottleneck layer
have been used to derive robust features for speaker recognition [14].
More recently, some preliminary studies have been conducted on us-
ing deep learning for speaker recognition, such as the use of convolu-
tional deep belief networks [15] and Boltzmann machine classifiers
[16].

3. DNN FOR SPEAKER VERIFICATION

The proposed background DNN model for SV is depicted in Fig-
ure 1. The idea is similar to [15] in the sense that neural networks
are used to learn speaker specific features. The main differences are
that here we perform supervised training, and use DNNs instead of
convolutional neural networks. In addition, in this paper we evaluate
on a SV task instead of the simpler speaker identification task.

3.1. DNN as a feature extractor

At the heart of the proposed approach in this work is the idea of using
a DNN architecture as a speaker feature extractor. As in the i-vector
approach, we look for a more abstract and compact representation of
the speaker acoustic frames but using a DNN rather than a generative
Factor Analysis model.

With this aim, we first built a supervised DNN, operating at the
frame level, to classify the speakers in the development set. The
input of this background network is formed by stacking each training
frame with its left and right context frames. The number of outputs

corresponds to the number of speakers in the development set, N .
The target labels are formed as a 1-hot N -dimensional vector where
the only non-zero component is the one corresponding to the speaker
identity. Figure 1 illustrates the DNN topology.

Once the DNN has been trained successfully, we use the accu-
mulated output activations of the last hidden layer as a new speaker
representation. That is, for every frame of a given utterance belong-
ing to a new speaker, we compute the output activations of the last
hidden layer using standard feedforward propagation in the trained
DNN, and then accumulate those activations to form a new compact
representation of that speaker, the d-vector. We choose to use the
output from the last hidden layer instead of the softmax output layer
due to a couple of reasons. First, we can reduce the DNN model size
for runtime by pruning away the output layer, and this also enables
us to use a large number of development speakers without increasing
DNN size at runtime. Second, we have observed better generaliza-
tion to unseen speakers from the last hidden layer output.

The underlying hypothesis here is that the trained DNN, having
learned compact representations of the development set speakers in
the output of the last hidden layer, may also be able to represent
unseen speakers.

3.2. Enrollment and evaluation

Given a set of utterances Xs = {Os1 , Os2 , . . . , Osn} from a
speaker s, with observations Osi = {o1, o2, . . . , om}, the process
of enrollment can be described as follows. First, we use every ob-
servation oj in utterance Osi , together with its context, to feed the
supervised trained DNN. The output of the last hidden layer is then
obtained, L2 normalized, and accumulated for all the observations
oj in Osi . We refer to the resulting accumulated vector as the d-
vector associated with the utterance Osi . The final representation of
the speaker s is derived by averaging all d-vectors corresponding for
utterances in Xs.

During the evaluation phase, we first extract the normalized d-
vector from the test utterance. Then we compute the cosine distance
between the test d-vector and the claimed speaker’s d-vector. A ver-
ification decision is made by comparing the distance to a threshold.

3.3. DNN training procedure

Given the low-resource conditions of the scenario explored in this
study (see Section 4), we trained the background DNN as a maxout
DNN using dropout [17][18].

Dropout is a useful strategy to prevent over-fitting in DNN fine-
tuning when using a small training set [18][19]. In essence, the
dropout training procedure consists of randomly omitting certain
hidden units for each training token. Maxout DNNs [17] were con-
ceived to properly exploit dropout properties. Maxout networks dif-
fer from the standard multi-layer perceptron (MLP) in that hidden
units at each layer are divided into non-overlapping groups. Each
group generates a single activation via the max pooling operation.
Training of maxout networks can optimize the activation function
for each unit.

Specifically, in this study, we trained a maxout DNN with four
hidden layers and 256 nodes per layer, within the DistBelief frame-
work [20]. A pool size of 2 is used per layer. The first two layers do
not use dropout while the last two layers drop 50 percent of activa-
tions after dropout, as shown in Figure 1.

Regarding other configuration parameters, we used rectified lin-
ear units [21] as the non-linear activation function on hidden units
and a learning rate of 0.001 with exponential decay (0.1 every
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5M steps). The input of the DNN is formed by stacking the 40-
dimensional log filterbank energy features extracted from a given
frame, together with its context, 30 frames to the left and 10 frames
to the right. The dimension of the training target vectors is 496,
which is the same as the number of speakers in the development set
(see Section 4). The final maxout DNN model contains about 600K
parameters, which is similar to the smallest baseline i-vector system.

4. EXPERIMENTAL RESULTS

The experiments are performed on a small footprint text-dependent
SV task. The data set contains 646 speakers speaking the same
phrase, “ok google”, many times in multiple sessions. The gen-
der distribution is balanced on the data set. 496 randomly selected
speakers are used for training the background model and the remain-
ing 150 speakers were used for enrollment and evaluation. The num-
ber of utterances per speaker for background model training varies
from 60 to 130. For the enrollment speakers, the first 20 utterances
are reserved for possible use in enrollment and the remaining utter-
ances are used for evaluation. By default, we only use the first 4
utterances of the enrollment set for extracting speaker models. We
used one out of 150 trials as a target trial and there are approximately
12750 trials in total.

4.1. Baseline system

In this small footprint text-dependent SV task, we aim to keep the
model size small while achieving good performance. The base-
line system is an i-vector based SV system similar to [5]. The
GMM UBM is trained on 13-dimensional perceptual linear predic-
tive (PLP) features with ∆ and ∆∆ features appended. We evaluate
the equal error rate (EER) performance of the i-vector system with
three different model sizes. The number of Gaussian components in
the UBM, the dimension of the i-vectors and the dimension of Linear
Discriminant Analysis (LDA) output are varied. The TVM is initial-
ized using PCA and further refined using 10 EM iterations, while
for UBM training we used 7 EM iterations. As shown in Table 1,
the i-vector system performance degrades with reduced model size
but not too significantly. The EER results with t-norm [22] for score
normalization are consistently much better than with the raw scores.
The smallest i-vector system contains about 540K parameters and
is used as our baseline system.

Table 1. Comparison of EER results of i-vector systems with differ-
ent number of UBM Gaussian components, i-vector and LDA output
dimensions.

#Gaussians i-vector LDA #Params EER EER
Dim Dim (raw) (t-norm)

1024 300 200 12.2M 2.92% 2.29%
256 200 100 2.1M 3.11% 2.92%
128 100 100 540K 3.50% 2.83%

4.2. DNN verification system

The left plot in Figure 2 shows the detection error tradeoff (DET)
curve comparison of the i-vector system and d-vector system. One
interesting finding is that in the d-vector system the raw scores are
slightly better than the t-norm scores, whereas in the i-vector system
the t-norm scores are significantly better. The histogram analysis
of the raw scores of the d-vector system indicates the distribution
is heavy-tailed instead of a normal distribution. This suggests more

sophisticated score normalization methods may be necessary for the
d-vector SV system. Moreover, since t-norm requires extra storage
and computation at runtime, we evaluate the d-vector systems using
raw scores for the following experiments unless specified.

The overall performance of the i-vector system is better than the
d-vector system: 2.83% EER using i-vector t-norm scores versus
4.54% with d-vector raw scores. However, in low False Rejection
regions, as shown in right bottom part of the plots in Figure 2, the
d-vector system outperforms the i-vector system.

We also experiment with different configurations for DNN train-
ing. Without maxout and dropout techniques, the EER of the trained
DNN is about 2% absolute worse. Increasing the number of nodes to
512 in the hidden layers does not help significantly, while reducing
the number of nodes to 128 gives much worse EER at 7.0%. Reduc-
ing the context window size to 10 frames on the left and 5 frames on
the right also degrades the EER performance to 5.67%.

4.3. Effect of enrollment data

In d-vector SV system, there are no speaker adaptation statistics in-
volved in the enrollment phase. Instead, the background DNN model
is used to extract speaker-specific features for each utterance in both
enrollment and evaluation phases. In this experiment we investigate
how much the verification performance changes in the d-vector sys-
tem with different numbers of enrollment utterances per speaker. We
compare the performance results using 4, 8, 12 and 20 utterances for
speaker enrollment.

Table 2. EER results of i-vector and d-vector verification systems
using different number of utterances for enrollment.

# utterances in enrollment
4 8 12 20

i-vector 2.83% 2.06% 1.64% 1.21%
d-vector 4.54% 3.21% 2.64% 2.00%

The EER results are listed in Table 2. It shows that both SV
systems perform better with increasing numbers of enrollment utter-
ances. The trend is similar for both systems.

4.4. Noise robustness

In practice there is usually a mismatch between development and
runtime conditions. In this experiment, we examine the robustness
of the d-vector SV system in noisy conditions and compare it with
the i-vector system. The background models are trained with clean
data. 10 dB cafeteria noise is added to the enrollment and evaluation
data. The comparison of DET curves are shown in the right plot in
Figure 2. As this figure illustrates, the performance of both systems
is degraded by noise, but the performance loss of the d-vector system
is smaller. Under 10 dB noisy environment, the overall performance
of the d-vector system is very close to the i-vector system. At oper-
ating points of 2% or lower False Rejection probability, the d-vector
system is in fact better than the i-vector system.

4.5. System combination

The results above show that the proposed d-vector system can be a
viable SV approach when compared to the i-vector system. The as-
sessment holds true mostly for noisy environments, or applications
that require small footprint model and low False Rejection rates. Al-
ternatively, here we aim to provide an analysis of a combined i/d-
vector system. Although more sophisticated combinations can be
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Fig. 2. Left: DET curve comparison between i-vector and d-vector speaker verification systems using raw and t-norm scores. Right: DET
curve comparison of the two systems in clean and noisy conditions.

Fig. 3. DET curve for the sum fusion of the i-vector and d-vector systems in clean (left) and noisy (right) conditions.

devised at the feature level, our preliminary results in Figure 3 are
obtained using a simple combination named as sum fusion, which
sums the scores provided by each individual system for each trial. A
prior t-norm stage was applied in both systems to facilitate the com-
bination of scores. Results show that the combined system outper-
forms either component system in essentially all possible operating
points and noise conditions. In terms of EER performance, the i/d-
vector system beats the i-vector system by 14% and 25% relative, in
clean and noisy conditions respectively.

5. CONCLUSIONS

In this paper we have proposed a new DNN based speaker verifica-
tion method for a small footprint text-dependent speaker verification
task. DNNs are trained to classify speakers with frame-level acous-
tic features. The trained DNN is used to extract speaker specific fea-
tures. The average of these speaker features, or d-vector, is then used
for speaker verification similarly to the popular i-vector. Experimen-
tal results show that the performance of the d-vector SV system is
reasonably good compared to an i-vector system, and system fusion

achieves much better results than the standalone i-vector system. A
simple sum fusion of these two systems can improve the i-vector sys-
tem performance in all operating points. The EER of the combined
system is 14% and 25% better than our classical i-vector system in
clean and noisy conditions respectively. Furthermore, the d-vector
system is more robust to additive noise in enrollment and evaluation
data. At low False Rejection operating points, the d-vector system
outperforms the i-vector system.

Future work includes improving the current cosine distance
scoring, as well as trying normalization schemes such as Gaussian-
ization for the raw scores. We will explore different combination
approaches, such as using a PLDA model over the the feature space
of the i-vectors and d-vectors stacked. Finally, we aim to investigate
the effect of increasing the number of development speakers and how
speaker clustering affects performance.
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