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Abstract. In the evaluation of speaker recognition systems, the trade-
off between missed speakers and false alarms has always been an impor-
tant diagnostic tool. NIST has defined the task of speaker detection with
the associated Detection Cost Function (DCF) to evaluate performance,
and introduced the DET-plot [1] as a diagnostic tool. Since the first
evaluation in 1996, these evaluation tools have been embraced by the
research community. Although it is an excellent measure, the DCF has
the limitation that it has parameters that imply a particular application
of the speaker detection technology.

In this chapter we introduce an evaluation measure that instead averages
detection performance over application types. This metric, C, was first
introduced in 2004 by one of the authors [2]. Here we introduce the
subject with a minimum of mathematical detail, concentrating on the
various interpretations of Cy, and its practical application.

We will emphasize the difference between discrimination abilities of a
speaker detector (‘the position/shape of the DET-curve’), and the cali-
bration of the detector (‘how well was the threshold set’). If speaker de-
tectors can be built to output well-calibrated log-likelihood-ratio scores,
such detectors can be said to have an application-independent calibra-
tion. The proposed metric Cy, can properly evaluate the discrimination
abilities of the log-likelihood-ratio scores, as well as the quality of the
calibration.

1 Introduction

Formal evaluations have played a major role in the development of speech tech-
nology in the past decades. The paradigm of formal evaluation was established in
speech technology by the National Institute of Standards and Technology (NIST)
in the USA. By providing the research community with a number of essential in-
gredients, such as new speech data, tasks and rules, and a concluding workshop,
these regular evaluations have led to significant improvements in all these eval-
uated technologies. It is therefore not strange that the evaluation paradigm has



been adopted by other research and standards organizations around the world
in various technology areas.

One of the most regularly held evaluations in the area of speech research is
that of text-independent speaker recognition. This Speaker Recognition Evalua-
tion (SRE) series has been organized yearly since 1996 by NIST, and has had
its 11th edition in the first quarter of 2006. Despite the many factors that have
varied along the various editions, a few key aspects have remained essentially
constant. One of these is the primary evaluation measure, namely the detection
cost function (DCF). It is specified in terms of the cost of misses and the cost of
false alarms, as well as the prior probability for the target speaker hypothesis. In
addition to the DCF, NIST compares the discrimination abilities of systems in
Detection Error Trade-off® (DET)-curves [1], which researchers have embraced
almost emotionally. In retrospect it can be concluded that it was quite an impor-
tant insight of NIST to define DCF and the presentation of the error trade-off
curves as they did, for it has become the standard in speaker recognition and is
also gradually finding its way into other areas of research.

In the workshop concluding the most recent (2006) NIST SRE, an exciting
new development became apparent. It was announced that NIST would in future
employ a new primary evaluation measure. This measure, which we call Cyy,, is
the subject of this chapter. It was proposed in a conference paper in 2004 [2] and
followed in 2006 by an extended journal paper [3]. The purpose of this chapter is
to be a more accessible tutorial introduction to the topic. (Apart from the two
above references, interested readers may want to see various other papers which
have since appeared on the same or closely related topics [4-8])

In the following, we will first review the problem of speaker detection and the
traditional evaluation techniques. This will be followed by motivation for and
introduction to some aspects of the new Cy, evaluation methodology and the
analysis thereof.

1.1 Recognition, verification, detection, identification

In the past, researchers have studied various forms of speaker recognition prob-
lems. Most notably, the problem of speaker identification has been studied ex-
tensively. It seems quite intuitive to see speaker recognition as an identification
task, because that appears the way humans perceive the problem. When you hear
the voice of somebody familiar, you might immediately recognize the identity
of the speaker. However, if we try to measure the performance of an automatic
speaker identification system, we find a number of questions hard to answer.
How many speakers should we consider in my evaluation? What is the distri-
bution of speakers in the test? If we think about it deeper, we can see that
performance measures such as identification accuracy will depend on the choice
of these numbers in the evaluation. What if a speaker identification system is
exposed to an ‘unknown’ speaker in the test? People have introduced ‘open set

3 Originally termed PROC in the 1996 evaluation plan



identification’ as alternative to ‘closed set identification,” but really the latter is
quite an unrealistic situation.

The solution to these undesirable questions lies in the proper statement of the
speaker recognition task: in terms of speaker detection. Formally, the question is:
Given two recordings of speech, each uttered by a single speaker, do both speech
excerpts originate from the same speaker or not?* By developing technology
that can answer this question for a broad range of speakers, many different
applications are possible. Speaker verification is a direct implementation of the
detection task, while open or closed set identification problems can be formulated
as repeated application of the detection task.

The succinct statement of the speaker recognition problem in terms of detec-
tion has several advantages. The analysis of the evaluation can be performed in
a standard way, which is the subject of Sect. 2. The evaluation measures do not
intrinsically depend on the number of speakers or the distribution of so-called
target and non-target trials. The true answer of the detection task can, if the
evaluation data collection is carefully supervised, be known by the evaluator
with very high confidence. Patrick Kenny summarized these positive aspects of
the detection approach by saying: “I’ve never come across a cleaner problem [in
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speech research]”.

2 The traditional approach of the evaluation of speaker
recognition systems

2.1 The errors in detection

In order to evaluate a speaker detection system, we can subject the system to
two different kinds of trial. In each trial, the system is given two recordings of
speech, originating either from the same speaker or from two different speakers.
The former situation is called a target trial and the latter a non-target trial.
The evaluator has a truth reference to tell the two types of trial apart, but the
system under evaluation has only the speech recordings as input. It is therefore
the purpose of the speaker detector to distinguish target trials from non-target
trials. In classifying the trials, there are two possible errors a system can make,
namely

— false positives, or false alarms, classifying a non-target trial as a target trial,
and
— false negatives, or misses, classifying a target trial as a non-target trial.

We observe that the speaker detection problem gives rise to two types of error,
the rates of occurrence of which are to be measured in an evaluation. Having two

4 One might call this a one-speaker open set identification task

5 This is how the statement is recalled as perceived by the authors in a salsa-bar
during the week of the 2006 Speaker Odyssey Workshop. However, the extremely
high noise levels made proper human perception very hard, which is indicative of the
fact that Automatic Speech Recognition cannot be stated as such a clean problem.



different error-rates complicates things because it makes it hard to compare the
performance of one system with another, or to observe an improvement in one
system when it is adjusted. Since comparison is the essential goal of evaluation,
it is important to find a way to do this. It is therefore the purpose of this chapter
to examine the question: how do we combine these two error-rates into a single
performance measure that is representative of a wide range of applications?

2.2 The DET-plot: A measure of discrimination

In order to continue, we need to introduce some of the basic concepts of how
speaker detectors work. There are many sources of variability in speech signals
and therefore a speaker detection system cannot be based on exact matching of
two patterns. Instead, it works with (statistical) models, and it calculates some
form of score® which represents the degree of support for the target speaker
hypothesis rather than the non-target hypothesis. The higher (more positive)
the score, the more the target hypothesis is supported and the lower (more
negative) the score, the more the non-target hypothesis is supported. It can be
shown that all the information which is relevant to making decisions between
the two hypotheses and which can be extracted from the two speech inputs of
a trial, can be distilled into a single real-valued score. Decisions as to which
hypothesis is true can now be based on whether or not the score exceeds a well
chosen threshold. Setting this threshold (a process known as calibration) is the
next challenge.

If we now look at the scores that a speaker detector typically yields for the two
types of trials, target and non-target trials, we may plot score distributions as in
Fig. 1. These score distributions, obtained from a real speaker detector evaluated
on NIST SRE 2006 data, has typical behaviour: the distributions overlap, the
target scores having higher values on average than non-target scores, and the
variance of the distributions is different. The threshold-based decision leads to
the error-rates Prpa and Ppiss, that can be read from the figure as the proportion
of the non-target scores exceeding the threshold and the proportion of target
scores below the threshold. From the figure you may also appreciate the fact
that if the threshold were chosen differently, the values of Ppa and P would
change. More specifically, they would change in opposite directions. Thus, there
is an inherent trade-off between lowering Pra against lowering Piss-

This trade-off is most spectacularly shown in a graph that is known as the
Detection Error Trade-off or DET-plot [1], where a parametric plot of Ppiss
versus Ppa is made, an example is shown in Fig. 2. The axes of a DET-plot are
warped according to the quantile function of the normal distribution, or using
another name, the probit function,

Q(p) = probit(p) = v2erf ' (2p — 1). (1)

where p is Ppa or Priss, and ‘erf 717 is the inverse of the error function. There
are several effects of the warping of axes. Firstly, if the target and non-target

5 often called a likelihood ratio, but we will not use this term for reasons that will
become clear later
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Fig. 1. The score distributions for non-target (left) and target (right) trials. The grey
areas left and right of the threshold represent Puiss and Pra, respectively.



score are distributed normally, the detection error trade-off will be a straight
line,” with a slope —0mon /Otar, Where Oiar non are the standard deviations of the
target and non-target distributions, respectively [9,10]. Secondly, the warping
has the advantage that several curves plotted in the same graph gives rise to
less clutter than if the probability axes were linear, as in ROC-curves (Receiver
Operating Characteristic, which is the traditional way of plotting false alarms
versus misses, or hits).

The DET-plot shows what happens as the decision threshold is swept across
its whole range, but on the curve one can also indicate a fixed operating point as
obtained when making decisions at a fixed threshold. It has been customary in
NIST evaluations to require not only scores, but also hard decisions. The Ppjss
and Ppa measured for these hard decisions correspond to such an operating point
on the curve.® It is good practice to draw a box around this point, indicating
the 95 % confidence intervals of Pra and P, assuming trial independence and
binomial statistics [11].

The DET-plot very clearly shows how the two error types can be traded
off against each other. For a given DET-performance the false alarm rate can
be reduced to an almost arbitrary low level by setting the detection threshold
high enough, if one is prepared to accept a high miss rate. And vice versa,; it all
depends on the application of the system: if the costs of a false alarm are very
high, or the prior probability of a target event is very low, we set the threshold
high and we ‘operate’ in the upper-left corner of the plot. If the application
sets different demands, we can operate at the opposite end. This trade-off is not
new, a theory of signal detection was developed for radar signals midway the
20th century, and later used by psychophysicists to model human perception of
stimuli in the sixties [12, 13]. We experience the same trade-off in everyday life,
such as in trying to separate spam e-mails from serious messages, and in trying to
create laws in society that can convict criminals while guaranteeing freedom for
citizens. In fact, in understanding the DET or ROC curves it becomes apparent
that striving for ‘zero tolerance’ or any other form of perfect filtering will backfire
immediately by resulting in unreasonable high costs at the flip side of the coin.

Returning now to speaker recognition, researchers have grown very fond of
DET-curves because they indicate the discrimination potential of their system at
a glance. DET-curves more towards the lower-left indicate better discrimination
ability between the target and non-target trials, and hence better algorithms.
Tiny improvements in the detector will show noticeable displacement in the
DET-curve, which stimulates the researcher to think of even more clever things.
A DET-plot is a great diagnostic tool: if the curve deviates far from a straight
line, or shows unexpected cusps or bends, this is usually an indication that there

" The reverse is not true, however. Note, that even though the underlying distributions
deviate noticeably from normal distributions (see Fig. 1), the DET-curve is straight
over a reasonably large range of probabilities.

8 provided these hard decisions were indeed made by thresholding the same score that
was used to generate the DET-plot
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Fig. 2. A DET-plot, obtained from Fig. 1. The line shows the trade-off of false alarm
against miss probability as the threshold increases from the lower-right to upper-left
corner. The rectangle indicates the operating point of the decisions made, corresponding
to the surface of the grey areas in Fig. 1. Further, the Equal Error Rate (EER) and

the operating point the ‘minimum DCF’ (see Sect. 2.3) are indicated. For d’, see the
text.



is something wrong in the detector or in the evaluation data or its truth reference.
As a final goody, plotting a DET-curve does not require setting a threshold.

The equal error rate. We went from decisions and Ppa and Ppiss to no
decisions and a whole curve that characterizes our detector. Can we somehow
summarize the DET-curve as a single value? Yes, we can, in several ways.

Firstly, noticing Pra and Py,jss move in opposite directions if the threshold is
changed, there always is a point where Pppa = Ppjss- This joint value of the error
rates is called the Equal Error Rate or EER. In the DET-plot it can be found
as the intersection of the DET-curve and the diagonal. The EER is a concise
summary of the discrimination capability of the detector.” As such it is a very
powerful indicator of the discrimination ability of the detector, across a wide
range of applications. However, it does mot measure calibration, the ability to
set good decision thresholds.

It may be interesting to compare the EER to a related measure from signal
detection theory. Here the task is to detect a signal in Gaussian noise, and hence
the two distributions to be separated are normal and have equal variance. In
this case, the DET-curve is completely characterized by the single parameter ‘d-
prime,’ the distance between the means of the distributions measured in units of
the standard deviation: d’ = (ptgar — finon)/0. In Table 1 the relation between d’
and the EER is shown, in order to give an idea what the separation of the target
and non-target distributions means in terms of EER. Another way of seeing d’ is
in the DET-plot (see Fig. 2), where it represents straight lines of slope —1. The
value of d’ determines where the diagonal is crossed, starting at the upper-right
corner for d’ = 0 moving down linearly to the lower-left corner where d’ = 6.

Table 1. Relation between d’, the separation of distribution in terms of standard
deviations, and the EER.

d 0|12 |3|4]|5
EER (%)|50.0|30.9(15.8(6.7|2.27|0.62

2.3 The Detection Cost Function: simultaneous measure of
discrimination and calibration

In calculating the DET-plot and EER, the evaluator effectively chooses optimal
decision thresholds, with reference to the truth. These evaluation procedures
therefore do not measure the actual decision-making ability of the detector on
unseen data. The canonical solution is a direct one—simply require the detector

9 Tt can be shown [14, 3] that if decision thresholds are always set optimally, then the
EER is the upper bound of the average error-rate of the detector as P,y is varied.
By average error-rate, we mean PiarPmiss + (1 — Prar)Pra, where Piar is the prior
probability of a target event.



to make decisions and then count the errors. Now how do we now combine
these error counts (of two types of error) into a scalar measure of goodness of
decision-making ability?

At a first glance, one could simply use the total number of errors as a per-
formance measure. Indeed, this solution is routinely practised by the machine
learning research community. However, reflecting on real applications there are
at least two important complications:

— The proportion of targets and non-targets may be different from the propor-
tions in the evaluation database.

— The two types of errors may not have equally grave consequences. For ex-
ample, for a fraud detection application the costs of a missed target (cross
customers) can be higher than the cost of a false alarm (a fraudulent action
not observed), while for access control the cost of a false alarm (security
breach) may outweigh the cost of a miss (annoyed personnel).

It therefore makes sense to weight the two normalized error-rates with (i) the
prior probability of targets in the envisaged application and (ii) the estimated
costs of the two error types. Applying these weightings, one then arrives at a
scalar performance measure, namely the expected cost of detection errors,

Cdet(PmiSS7 PFA) - OmisstissPtar + C’FA]DFA(l - Ptar)~ (2)

This function has become known as the detection cost function. Here the nor-
malized error-rates Ppiss and Ppa are determined by the evaluator by counting
errors. The application dependent cost parameters C,iss and Cgp are discussed
above, and the parameter P;,, is the prior probability that a target speaker
event occurs in the application. This prior must be assigned to correspond to
some envisaged application of the speaker detector.

Given prescribed values for the parameters of Cget, the onus now rests on
the designer of a speaker recognition system under evaluation, to choose a score
decision threshold that minimizes Cyet. For this purpose the evaluee may use a
quantity of development data with a known truth reference. Minimizing Cye; on
the development data may or may not give a Cye that is close to optimal on
new unseen evaluation data. This is an important part of the art of designing a
speaker detector: to calculate scores that are well-normalized so that thresholds
set on development data still work well on unseen data.

In summary, the three application-dependent parameters Cp,iss, Cra and
Py, form the detection cost function Cyet (Priss, Pra ), which gives a single scalar
performance measure of a speaker detection system.

The detection cost function is a simultaneous measure of discrimination and
calibration. This error measure of a detector will have a low value provided that
both (i) EER is low and (ii) the threshold has been set well.

C4et has been used since the first NIST speaker recognition evaluation in
1996 as the primary evaluation measure, and with it, the three application-
dependent cost parameters have been assigned values Cpiss = 10, Cra = 1 and
Piar = 1%. These values have never changed in the evaluations, and occasionally



a researcher wonders how these values were chosen. The long tradition and fixed
research goals have caused these choices to fade from our collective memory,
but in a recent publication [11] an example of an application with these cost
parameters is given.

‘Minimum Detection Cost.” Minimum Cye¢ is similar, but not identical to
EER. It is a measure of discrimination, but not of calibration. It is defined as
the optimal value of C4et obtained by adjustment of the detection threshold,
given access to the truth reference. Unlike EER it is dependent on the particular
application-dependent parameters of Cyey.

In the context of the NIST SRE, it is customary to indicate C’g;it“ on DET-
curves, as is shown by the circle in Fig. 2. Note that this circle does not show the
numerical value of (rf,‘;tn, rather it shows the values of P and Ppa at which
Caet is minimized. This is in contrast to the APE-curve, which we introduce

min

below, which does directly show the numerical value of C3.".

Discussion. So we’ve found two more performance metrics, EER and ggt“,
that each summarize the DET-plot in their own way. Both are used extensively
in literature, the former in a ‘general application’ context and the latter in a
‘NIST evaluation’ context. They are very important performance metrics, but
they circumvent one major issue: setting the threshold. In fact, EER and C}in
are after the fact error measures. They imply that the threshold can not be set
until all trials have been processed and, moreover, the truth about the trials is
known. Summarizing, EER and Ci" are great for indicating the discrimination
potential, but they do not fully measure the capability of making hard decisions.

Is this really a problem? For many researchers it is not. Setting the threshold,
as is necessary for submitting results to a NIST evaluation, is simply based on
last year’s evaluation data, for which the truth reference has been released.'°
This usually results in a Cyeq that is not too much above C'it and everything
is fine. Sometimes, the evaluation data collection paradigm has changed or the
recruitment of new speakers has been carried out in a different way, and the cal-
ibration turns out wrong. A real shame, but usually most participating systems
‘get hurt’ in the same way, and there is always a next year to do better.

So let us recapitulate our quest for a single, application independent per-
formance measure for speaker recognition systems. We started with a clear and
unambiguous statement of the task of a speaker recognition system. This lead
to two types of error which are interrelated by means of a trade-off. By using a
cost function Cget, we could reduce the two error measures to a single metric,
at the cost of having to define application-dependent parameters. Postponing
the setting of a threshold gave us a beautiful DET-plot and a powerful EER

summary, at the cost of not measuring calibration.

10 Often, the calibration happens just before the results are due. The present authors
are in this respect not different from other researchers.



3 A new approach to speaker recognition evaluation

In the previous section we have introduced several measures characterizing the
performance of a speaker recognition system. Although they each have their
merits and their use is quite widespread, we will show in this section that we
can demand more information from a speaker detector than just a score and a
decision, and that there exists a metric that says how good this information is.
It combines the concept of expected costs, like Cyet does, with soft decisions and
application-independence, like the DET-curve suggests. Before we introduce it,
we are going to have a closer look at the interpretation of scores.

3.1 The log-likelihood-ratio

So far, we have learnt that a speaker detection system produces a score for every
trial. The only thing we have required of the score is that a higher score means
that the speech segments are more alike. A set of scores is sufficient to produce
a DET-curve, and with an additional threshold we can also calculate Cye;. But
there is a lot of freedom in the values of the scores. First, there is an arbitrary
offset that can be added to all scores (and the threshold) and nothing in the
evaluation will change. Or the score can be scaled; in fact, the whole score-axis
can be warped by any monotonic rising function, and everything in the DET-
plot will stay exactly the same. There is no meaning in the scores, other than
an ordering.

We can use this freedom in score values to fix the problem of application
dependence. To see how this works, we examine how a score s for a given trial
can be used to make an optimal decision for that trial. The expected cost of
making an accept decision is (1 — P(target trial|s))Cpa, while the expected cost
of making a reject decision is P(target trial|s)Ciyiss- Here P(target trial|s) is the
posterior probability for a target trial, given the score s. The minimum-expected-
cost decision is known as a Bayes decision.!! To make a Bayes decision, we need
the posterior, which may be expressed, via Bayes’ rule, as

logit P(target trial|s) = £(s) + logit(Piar) (3)

where!?

P(s|target trial) )
(s|non-target trial)
is known as the log-likelihood-ratio of the score. Putting this all together, we get
a concise decision rule:

L(s) = log P

. | accept if L(s) > -6,

decision(s, 0) = {reject if L(s) < -0, (5)

1 1t is easily shown that if one makes a Bayes decision for every trial, this will also
optimize the expected error-rate over all the trials, which is just our evaluation
objective Cyet.-

12 We use the function: logitp = log %, which re-parametrizes probabilities as log
odds, because for binary hypotheses, it transforms Bayes’ rule to the elegant additive
form of (3).



where the decision threshold 6 is a function of the application-dependent cost

and prior parameters,
Ptar Omiss
0=1 —_— 6
Og<1_Ptar CFA ()

Equation (5) forms a neat separation between £(s) and 8. The purpose of the
score, s, is to extract relevant information from the given speech data of the
trial. The purpose of L(s) is to shape, or calibrate, this information into a form
that can be used in a standard way to make good decisions. The information,
L(s), extracted from the speech data is application-independent, because all the
application-dependent parameters have been separated and encapsulated into
the single application parameter 0.

Notice that £(s) may also be called a score. It has the same look and fee
as s, where more negative scores favour the non-target hypothesis and more
positive scores favour the target hypothesis. The difference is that £(s) is cali-
brated so that minimum-expected-cost decisions may be made with the standard
threshold 6.

In fact £(s) may be interpreted as expressing the degree of support that the
raw score s gives to one or the other hypothesis. When L(s) is close to zero, the
score does not strongly support either hypothesis, but as the absolute value of
L(s) grows there is more support for one or the other hypothesis. The hypothesis
that is favoured is indicated by the sign of L(s).

If a speaker detector can produce L(s) instead of the raw s, this has obvious
advantages for users. The same system can now be used by different users having
different applications (i.e., different 6), and still the calibration is right. The user
does not have to ask the system developer: “My application parameters have
changed. Could you please re-calibrate your detector?” Now the user can easily
calculate the threshold € and indeed change it at will as circumstances dictate.

So what is new here? Nothing in fact. The theory of making Bayes decisions
has been known for a long time. The catch is that even if your DET-curve is
good it may also be difficult to calculate well-calibrated soft decisions in log-
likelihood-ratio form, just like it used to be difficult to set good hard decision
thresholds for Cyet. The key to this problem is that until quite recently it has not
been known in the speaker recognition community how to evaluate the quality
of detection log-likelihood-ratios. The purpose of this chapter is therefore to
introduce the reader to how this may be done. Once we know how to measure,
half the battle towards improving performance has been won.

113

3.2 Log-likelihood-ratio cost function

At a first glance, evaluation of log-likelihood-ratio scores may be accomplished
by a small adjustment of the NIST SRE protocol:

13 This is why we prefer to work with a log-likelihood-ratio, rather than a likelihood-
ratio. The (non-negative) likelihood-ratio has the uncomfortable asymmetry where
smaller scores are compressed against 0.



Instead of having evaluees submit hard decisions for evaluation via Cget,
they are now required to submit soft decisions in log-likelihood-ratio
form. Then instead, the evaluator makes the decisions by setting the
threshold at —0. These decisions may then be plugged into Cyet as before,
to get a final evaluation result.

In principle this is a very good plan, but it has the flaw of not really changing
anything. If the value of 6 is known to participants, then they may calibrate their
scores to work well only at the specific point on the log-likelihood-ratio axis that
is ‘sampled’ by evaluation at 6. Intuitively, sampling the log-likelihood-ratio at
a single point can show that scores have been shifted to have log-likelihood-ratio
interpretation, but it still leaves the scale of the evaluated scores completely
arbitrary.

Once we have realized that a single sampling point is the problem, it is con-
ceptually easy to fix: just sample the decision-making ability of the log-likelihood-
ratio scores under evaluation at more than one value of 6. The evaluator may
now calculate a Cgey at each of these operating points. This leaves the questions
of (i) how many points do we need to sample, (ii) which points do we choose
and (iii) how do we combine the different Cye results over these points in order
to get a single metric?

Of course there are many good answers to these questions. Here we discuss
the particular solution which has been motivated in detail in [3]. This solution
proposes to sample Cget over an infinite ‘spectrum’ of operating points and to
then simply integrate over them, thus:

Cllr - CVO / Cdet (Pmiss(a); PFA (0)7 0) do (7)

— 00

where Cyy, is the new metric, which we call the log-likelihood-ratio cost function
and where Cy > 0 is a normalization constant. Some notes are in order:

— The error-rates Py and Ppa are now functions of 6, because —6 is just
the decision threshold. By sweeping the decision threshold, the evaluator is
effectively sweeping the whole DET-curve of the system under evaluation.
This effectively turns Cj, into a summary of discrimination ability over the
whole DET-curve, somewhat similar to EER.

— Equally important is the fact we have now also made Cgot dependent on
0. Since Cg4e; implies making actual decisions, we are also incorporating
the evaluation of calibration into our metric. Moreover, since Cgey varies
with 6, we are also measuring calibration over the whole #-spectrum. Re-
call from (2) that Cget is parameterized by the triplet (Piay, Ciniss, Cra ). We
may parametrize Cge; equivalently'® by (ptar,émiss =1,Cpp = 1), where
Ptar ‘incorporates’ the cost parameters. This single parameter Ptar can be

4 By equivalent, we mean that identical decisions, DET-curves and comparisons be-
tween systems are made. The DCF itself is scaled down by a factor PiarChmiss + (1 —
Piar)Cra, which is 1.09 for the NIST parameters.



expressed in terms of 6,

]5 _ Ptarcmiss
rar Ptarcmiss + (]- - Ptar)CFA
1
= — =logit 4 (8)

1+e?

If we parameterize like this, then 6 = logit(P,.,;) has the interpretation of
prior log-odds. The interested reader may consult [3] for further motivation of
this parametrization. In short, although specifying cost and prior are neces-
sary when making decisions in real applications, having both costs and prior
as evaluation parameters is redundant. Since the cost and prior multiply to
form the parameter 6, we may arbitrarily assign fixed costs and parametrize
the entire spectrum of applications by the single parameter Piar, O equiva-
lently by 6. By assigning unity costs we gain the advantage that now Cy, may
be interpreted as an integral over error-rates. Finally, since we are making
actual decisions and evaluating them via Cye, we are not only measuring
discrimination, but we are also at the same time measuring calibration.

Realizing that the new measure Cj, is a measure of both discrimination and
calibration, we see that Cj, for a detector will be good provided that both (i)
EER is low and (ii) £(s) is reasonably well calibrated over all operating points
of the #-spectrum.

To recapitulate, Cyet is a measure of discrimination and calibration suitable
for evaluating hard (application dependent) detection decisions, while Cy, is a
measure of discrimination and calibration suitable for evaluating soft (application-
independent) detection decisions in log-likelihood-ratio form.

Practical calculation Equation (7) is a derivation and an interpretation of
our new metric Cy, but how do we practically calculate this integral? The good
news is that it has an analytical closed-form solution:

Cn({L]}) = —— ( LS log(1 e )+ 3 1og(1+eﬁi)). )

- 2log2\ NV
og tar tEtar NOM tenon

where £} is the attempt of the system under evaluation to calculate the log-
likelihood-ratio (of (4)) for trial ¢; and where ‘tar’ is a set of Ni,, target trials
and ‘non’ is a set of Ny, non-target trials. The two normalized summation terms
respectively represent expectations of ‘log costs’ for target trials (left-hand term)
and for non-target trials (right-hand term).

Let us look more closely at these log costs. For a target trial the cost is
Ciar = log(1+ e_q). If the detector correctly gives a high degree of support for
the target hypothesis, £} > 1, then the cost is low: C,r & 0; but if it incorrectly
gives a high degree of support for the non-target hypothesis, £; < —1, then
the cost is high'®: Ci,, &~ |£}]. Conversely, the cost for non-target trials, Chon =
log(1 + 64), behaves the other way round.

15 When degree of support is expressed as log-likelihood-ratio, then the behaviour of
the log-cost is intuitively pleasing: if the detector output has the wrong sign, there



We have seen that extremely strong support for either hypothesis can have
high cost, but what is the cost of a neutral log-likelihood-ratio? When £} = 0,
then Ciar = Chon = log 2. This means that the reference detector, which does not
process speech and which just outputs £, = 0 for every trial, will earn itself a
reference value of Cy, = 1. This is of course no coincidence, but is a consequence
of the normalization factor in (9).

3.3 Discrimination/Calibration decomposition: The PAV algorithm

So far we have shown how the new cost measure Cj, generalizes Cyot—but can
we also find an analogy for C’é%it“, the minimum achievable Cge if calibration
were right? Again, the answer is affirmative. Just like a miscalibrated threshold
can be fixed, post hoc, by choosing a different threshold that minimizes Cget, it
is possible to find a monotonic rising warping function w, which, when applied
applied to £} for every trial ¢, will minimize Cyj, as measured on the warped
log-likelihood-ratios £} = w(L}). As before the minimization is performed given
the truth reference for the evaluation, but note that it involves finding the whole
warping function w rather than just a single threshold value. The warping func-
tion is constrained to be monotonic rising for several reasons:

— It is consistent with applying a single decision threshold to both £} and L£}.

— A monotonic rising function is invertible and therefore information-preserving,.
The warping function should correct only the form (calibration) of the out-
put, but not the content (discriminative ability) of the score.

— The DET-curve (and therefore also the EER) is invariant under monotonic
rising warping.

— If there were no constraint, Cy, would trivially be optimized to zero, which
is a useless result.

How do we find w? Note first that since monotonicity is the only constraint,
every value of w can be optimized independently for every trial, in a mon-
parametric way. There is a remarkable algorithm known as the Pool Adjacent
Violators (PAV) algorithm'® which can be employed to do this constrained non-
parametric optimization. The input is the system-supplied log-likelihood-ratio
scores for every trial as well as the truth reference. The output is a set of op-
timized log-likelihood-ratio values for these trials, where the sorted ordering of
input and output scores remains the same, because of the monotonicity. With

is a cost which increases with the magnitude of the error. But if degree of support is
instead expressed as a posterior probability, then a posterior of exactly 0 corresponds
to L; = —oo and then Ci,r = oo (likewise, for a non-target trial, a posterior of 1 gives
Chon = 00). This is not a flaw of the Cyi; metric. Rather it shows that a posterior of 0
or 1 is an unreasonable output to give in a pattern recognition problem where there
can never be complete certainty about the answer. Working with system outputs (of
moderate magnitude) in log-likelihood-ratio form, rather than likelihood-ratio form
or posterior probability form naturally guards against this problem.
16 Tt is also known as isotonic regression.



these optimally calibrated log-likelihood-ratios w(L}) we can apply (9) to find
the minimum Cy,

O™ = O ({w(£1)}). (10)

It is beyond the scope of this chapter to go into the details of the PAV algorithm
(details are available in [3] and references therein), but it may be instructive to
see what the warping function w(£) typically looks like. Let us take the system
that produced the score distributions in Fig. 1 and the DET-curve shown in
Fig. 2. We plot the warping function w(L) for this system, as found by the
PAV algorithm, in Fig. 3. The PAV warping function has a stepped nature,
which is a consequence of the ‘pooling’ of monotonicity violators. This system
shows an average slope of 1 over a reasonable range of £, but there is an offset.
The log-likelihood-ratios given by this system are too optimistic towards target
speakers. One can further observe a non-linear flattening of the curve at the
extremes, indicating that the system-supplied log-likelihood-ratio tended to be
over-optimistic in those regions.

Note that the PAV algorithm can also be used as the basis for calibration.
Just like a detector can be calibrated for a single application-type by choosing
a threshold that minimizes Cg4e; on some development test data, it is possible
to calibrate log-likelihood-ratio scores by applying the PAV algorithm to devel-
opment test data scores s, to minimize CY, for that data. The warping function
w(s) can then be interpreted as a score to log-likelihood-ratio function L(s). Hav-
ing said this, we leave the subject of calibration methods, since it is not a topic
of this chapter. Rather, this is the story how to measure calibration.

Recall that Cy, is a measure of both discrimination and calibration. But since
Cmin has any calibration mismatch optimized away, it is a now pure measure
of discrimination. This now allows us to decompose'” Cj, to also obtain a pure
measure of calibration. Because of the logarithmic nature of Cyy,, it turns out
that it is appropriate to form an additive decomposition: Our measure of cali-
bration now becomes just Cyj, — Cii". This difference is non-negative, is close to
zero for well-calibrated systems, and grows without bounds as the system un-
der calibration becomes increasingly miscalibrated. In summary, this PAV-based
procedure forms the application-independent generalization of the traditional
measures C’ggt“ and Cget — ggtn.

As we shall further demonstrate with APE-curves below, the ability to do
this discrimination/calibration decomposition is an important feature of the Cy,
methodology. The ability to separate these aspects of detector performance em-
powers the designer of speaker detection systems to follow a divide-and-conquer
strategy: First concentrate on building a detector with good discriminative abil-
ity, without having to worry about calibration issues. Then when you want to
move on to practical applications, concentrate on also getting the calibration
sorted out.

17 In this chapter, we use the term discrimination/calibration decomposition. This is
similar in spirit, but not in form, to the refinement/calibration decomposition which
was introduced by De Groot two decades ago [15] and again recently examined for
speaker detection in ref. [6]
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Fig. 3. The result of the PAV algorithm applied to the log-likelihood-ratio scores for
which the score distributions were shown in Fig. 1.



3.4 The APE-curve: Graph of the Cj;, integral

The Cy,-integral, (7), is the integral of Cqet () over the application parameter 6.
We will now show that this integral can be visualized in a powerful graph. The
essential part of the integrand of (7) is the error probability

P.(0) = Prax(0) Puiss (0) + (1 — Prar(0)) Pra(6). (11)

Note that all of P,, Ptar, Poiss and Ppa are functions of 6. The graph of P,
against 0 forms the basis of the Applied Probability of Error (APE)-plot.

In Fig. 4 we show the APE-plot for our example system. Along the horizontal
axis we have 6, which as explained before can be called the ‘prior log odds’.
Note that the horizontal axis of the APE-plot is the whole real line, but that
we plot'® only the interesting interval close to § = 0. The vertical axis is the
error-rate axis, which takes values between 0 and 1. On these axes, we plot three
curves: solid, dashed and dotted, which are respectively error-rates of the actual,
PAV-optimized and reference systems. From these plots we can read a wealth of
information:

The solid curve is P.(6) of (11). It shows the error-rate obtained (at each 6)
when minimum-expected cost decisions are made with the log-likelihood-
ratio scores £} as output by the system under evaluation. Note:

— The area' under the solid curve is proportional to Cj, which can be
interpreted as the total actual error over the spectrum of applications.

— The vertical dashed line at § = —log 9.9 represents the traditional NIST
DCF parameters, so that the solid curve at this point gives?? the tradi-
tional actual Cget.

— The error-rate goes to zero for large |0, in such a way that the Cy,
integral exists (has a finite value).?!

The dashed curve shows P.(6), but with scores £} replaced by w(L}) as found
by the PAV algorithm.

— The area under the dashed line is proportional to CIM", which can be
interpreted as the total discrimination error over the whole spectrum of
applications.

— The area between the solid and dashed curves represents the total cali-
bration error.

— At the vertical line representing the NIST DCF parameter settings, Cin
can be read?? from the dashed curve.

18 Recall that both of the axes in DET-curves are also infinite and that there too, we
plot only a selected region.

19 The area is the analytically derived definite integral over the whole infinite f-axis
and not just the area under the visible part of the curve.

20 The value of the solid curve is an error-rate, which is a scaled version of the cost,
Claet, where the scaling factor is 1.09, as derived in footnote 14.

2! This holds, provided that |£}| < oo, for every trial t. If however the system does
output even a single log-likelihood-ratio of infinite magnitude having the wrong sign,
then the Ci, integral will evaluate to infinity.

22 again subject to the scaling factor of 1.09.



— The dashed curve has a unique global maximum, which is the equal-
error-rate (EER). This maximum is typically located close to 6§ = 0.
The dotted curve represents the probability of error for the reference detec-
tor, which does not use the speech input, basing its decisions only on the prior
Piar. As noted above, the reference detector outputs L, =0 for every trial.
The error-rate of the reference detector is P,(#) = min(Par(6),1 — Prar(8)).
Note here:

— The APE-plot scale does not show the maximum at P, = 0.5.

— The area under the dotted curve is proportional to one (with the same
scale factor as the areas under the other curves), and therefore represents
the Cj-value of the reference system.

— For |0] > 1, P. goes to zero rapidly.

— For large negative 6 we can observe that our example system performs
worse than the reference detector!

The APE-curve is complementary to the traditional DET-curve. There is
information, like the EER, that is duplicated in both curves, while some infor-
mation displays better on the DET-curve, and other information better on the
APE-curve. As a general rule, the DET-curve is a good tool for examining details
of discriminative ability, while the APE-curve a a good tool for examining de-
tails of calibration. In addition, both curves have value as educational resources:
As we know, the DET-curve demonstrates the error-tradeoff. The APE-curve
demonstrates:

— The derivation of Cy, as an integral of error-rate over the spectrum of ap-
plications.

— The importance of the EER as an application-independent indicator of dis-
criminative ability.

— As discussed in more detail below, Cj has the information-theoretic in-
terpretation of being the amount of information that is lost between the
input speech and the final decisions. The APE-curve is therefore a graphical
demonstration of a relationship between information and error-rates—the
more information you extract from the speech, the lower the error-rates will
be.

Discussion. There is something interesting going on in the APE-curve around
# = 0. On the one hand we see that P. gives the biggest contribution to Ci
in this region. That would suggest that the task of the detector is hardest for
0 ~ 0, including the task of calibration. On the other hand, the benefit with
respect to the reference detector is also the biggest in this region. Another way
of phrasing this is that it seems that the information can be extracted from the
speech signal most effectively when P, &~ 0.5. For |8] > 1 there is already a
lot of information in the prior, and it is difficult to add something useful by
analyzing the speech signal, even though the probability of error is lower.
There is a further concern: it is also more difficult to accurately estimate
error-rates when |6| > 1, because the absolute number of errors in these regions
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Fig. 4. APE-plot for our example system. Indicated are: P.(6) for observed £ (solid
curve), optimally calibrated w(L£) (dashed curve) and a reference detector (dotted
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becomes small and eventually vanishes. So it seems the extreme regions of the
APE-curve are regions where our detectors probably won’t work so well, but
also where we cannot estimate their performance accurately. In our APE-plots,
we ignore these regions by not plotting them. This is just the same as is done
with DET-curves. The horizontal and vertical axes of the DET-plot are infinite,
but we always plot just a finite interesting region of this plot. Outside of this
plot, the DET-curve becomes increasingly jagged, which is an indication of poor
error-rate estimates.

The saving grace is that there are real-life effects that force reasonable ap-
plications to lie close to # = 0. There may certainly be applications where the
prior P, becomes very small. But when things become scarce, their value gen-
erally increases. This means the cost of missing scarce events increases as the
prior becomes smaller. Now recall (6) and note that a decrease in P,y will be
compensated for by an increase in Chss, leaving 6 approximately unchanged.
Conversely, a similar argument shows that when 1 — P;,, becomes small, then
Cra would increase to compensate, again tending to keep 6 roughly constant.
It does therefore seem to make sense to concentrate our efforts to the benign
central region of the APE-curve (or the corresponding region of the DET-curve).

3.5 Information-theoretic interpretation of Cy,

We have introduced Cy), as an integral of Cyey over the spectrum of applications,
but as hinted above, C}, can be also be interpreted as a measure of loss of
information [3].

Again, we will not do a rigorous information-theoretic derivation, but rather
show informally how 1 — C)j; can be interpreted as the average information per
trial (in bits of Shannon’s entropy) that is gained by applying the detector.
The information extracted by the detector from the speech is dependent on
what is already known before considering the speech. This prior knowledge is
encapsulated in the prior, P,,. When P, = 0, or P,y = 1, then there is
already certainty about the speaker hypothesis and the detector cannot change
this—the posterior will also be 0 or 1. However, values of P;,, between these
extremes leaves a degree of prior uncertainty, up to a maximum of 1 bit where
Piar = 0.5. This maximum prior uncertainty is the reference level against which
Cir measures the information that the detector can extract from the speech.
The information extracted from the speech by the detector, namely 1 — Cy;, bits
per trial, behaves in the following way:

— A (theoretically) perfect detector has Cj, = 0 and therefore 1 — Cy, =
1, so it extracts all the information for every trial, transforming the prior
uncertainty to posterior certainty in every case.

— A good, well-calibrated, real-life detector has 0 < Cy, < 1, extracting an
amount of information somewhere between 0 and 1 bit per trial.

— The reference detector which does not process the input speech has Cy, = 1
and therefore extracts 0 bits of information from every trial.



— A very badly calibrated?? detector can do worse than this, having Cy, > 1,
therefore extracting a megative amount of information. The negative sign
indicates that on average over the APE-curve, the detector under evaluation
has a higher error-rate than the reference detector. In this case it is therefore
detrimental to use the detector and it is obviously better not to use (or at
least to go and re-calibrate) the detector, because one could do better by
just using the reference detector.

3.6 Comparison of systems: DETs and APEs

Let us end this chapter with an example of the use of Cy, and APE-plots for
comparing systems or conditions. This, in the end, is one of the key reasons
to perform evaluations. To this purpose we use the data of two systems under
evaluation of NIST SRE 2006 [4] which both may be called state of the art. The
first system (which we have seen in earlier figures) consists of a single detector,
the second system consists of the fusion of 10 separate detectors, of which the
first system is one.

We further compare two evaluation conditions. The first condition includes
trials with speech spoken in several languages, while the second condition has
the subset of the trials where both speech segments are English.

We first look qualitatively at the DET-plot of three system/conditions in
Fig. 5. Note how the DET warping of axes separates the three curves comfortably
in the plot?4.

If we now inspect the curves more closely, we see that in terms of discrim-
ination ability, the fused system performs favourably compared to the single
system. Similarly we can conclude that, for the fused system, the English only
trials were easier to discriminate than the whole collection of trials including
several languages. (It does not really make sense to compare the upper and the
lower curve, since both system and condition are different.) As for calibration,
we can only conclude that for the NIST DCF the calibration was reasonable,
and possibly better for the English only condition. We can finally observe that
the lowest curve gets a bit noisy because a relatively low number of errors are
made. For the English-only condition we have less than 30 target trial errors
around Ppiss < 1.4 %, so that if we apply George Doddington’s ‘rule of 30’ [16]
we find that for these low miss probabilities we are less than 90 % confident that
the true Poiss is within 30 % of the observed Ppiss-

We next look at the same systems evaluated on the same data, but depicted
in APE-plots in Fig. 6. Here we have included a bar-graph of the Cj, and its

2 It is only calibration problems that can cause Cy, > 1. If we remove calibration
effects, considering only the discriminative ability of the detector, we find 0 < CPI* <
1.

24 With many different systems or conditions, the number of curves in a DET-plot
is more often than not limited by the number of colours and/or line types. Also
notice that the legend in the plot enumerates the curves in the same top-to-bottom
order as the curves appear in the plot, i.e., according to the EER. (This practice is
unfortunately not followed by all authors.)
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Fig.5. A DET-plot for three system/conditions. From top to bottom: Single system,
all trials; Fused system, all trials; and fused system, English trials. Notice that the
upper and lower curve should not be compared with each other.



decomposition into discrimination and calibration loss, expressed in bits. The
scales of the figures are the same, so that values can be compared visually.
We can observe that although the fused system has much better discrimination
power than the single system, the calibration error is roughly the same. Similarly,
restricting trials to only English has a bigger effect on the discrimination than
on the calibration. From the APE-curves we can learn that there is still quite
some calibration performance to be gained for the fused system, especially at
6 = 0. All systems/conditions seem to suffer from being ‘worse than the reference
system’ at very low 6.
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Fig. 6. APE-plots of the systems shown in Fig. 5. Note, that the graphs left and middle
compare two systems, while the graphs middle and right compare two conditions.



One difference between DET and APE is the way that inaccuracies due to
the limited number of trials show up. The curve in a DET-plot usually becomes
ragged at the ends due to the low number of errors involved, showing that at
each end, respectively Piss or Pra is poorly estimated. The fact that this effect
is visible on the plot is a consequence of the magnification of small probabilities
by the probit scale used in the DET-curve. In the APE-curve we do not see
these effects, because when either P55 or Ppa is poorly estimated, their value
on the vertical axis is also small. Since Cy;; is the area under the APE-curve,
we see that fortunately these inaccuracies contribute relatively little to the total
Cir integral. Having said this, we must also remark that the proportions of
the numbers of target and non-target trials in a NIST evaluation typically is
1:10, which leads to almost optimum accuracy at the operating point defined by
Cget—this may be observed from the roughly equal 95 %-confidence intervals in
the DET-plot around Cyge¢. This 1:10 ratio has the effect that the left-hand side
of the APE-plot is somewhat less noisy than the right-hand side.

4 Conclusion

We reviewed and appreciated the traditional measures that the speaker recog-
nition community uses to assess the quality of automatic speaker recognition
systems. The detection cost function Cqet measures the application-readiness
of a system for a particular application-type as defined by the parameters P,
Chiss and Cpa . NIST deserves credit for defining the task and evaluation measure
and the progress that this has stimulated in the field. In particular, concentrat-
ing on detection rather than identification; and using expected cost, rather than
error-rate for evaluation have had far-reaching effects. Moreover, the DET-curve,
with its warped axes, show very well the trade-off between Pps and Ppiss, and
allow for direct comparison of discrimination ability of many different systems
or conditions in a single graph. Again, NIST deserves credit for introducing this
type of analysis in the community—indeed, gradually DET-plots are being ap-
plied in other disciplines. Finally, when calibration is not an issue, the traditional
EER remains a good single-valued summary of the discriminative capability of
a detector. The utility of the EER as summary of discriminative ability can be
appreciated in different ways in the DET and APE-plots.

We have further shown the limitations of Cge; and C’ggﬂ in the sense that al-
though they do measure calibration, they do so only in an application-dependent
way. Of course, the DET-plot and the EER do not measure calibration.

Next, we reviewed the advantages of working with log-likelihood-ratios instead
of merely with scores. Perhaps the most important advantage is that users can
then set their own decision thresholds, where the thresholds are dependent only
on properties of the application and not on the properties of the speaker detector.
Despite these obvious and well-known advantages, the use of log-likelihood-ratio
outputs in speaker recognition has not been common, presumably because such
likelihood-ratio outputs are in practice subject to calibration problems, and with-



out being able to measure these calibration problems, researchers had no good
way to even start tackling this problem.

Our most important contribution in this chapter is therefore the introduc-
tion of a methodology to measure the quality of log-likelihood-ratios via Cj;.
Moreover, we paid special attention to the issue of calibration, by forming a dis-
crimination/calibration decomposition of Cj,. The practical calculation of Ci,
via (9) is no more complex?® than the traditional Py and Ppa calculations.
The calculation of C’H“;i“ is somewhat more complex, because it involves the
PAV algorithm, but fortunately implementations are available to researchers,
see e.g. [3].

Finally, we showed that the new metric C;; has the interpretation not only
as an integral of error-rates over the spectrum of applications, but also as the
average information loss between speech input and decisions. This relationship
is graphically demonstrated by the APE-plot, which indeed, for analysis of cali-
bration, forms a useful complement to traditional DET-plots.

In conclusion, looking towards the future, it was announced at the June 2006
workshop of the NIST Speaker Recognition Evaluation that NIST intended to
include the new measure Cy), as the primary evaluation measure in future evalu-
ations. We hope this will stimulate more research on the subject of calibration,
which is an important factor of the design of speaker recognition systems.
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