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1 Context

1.1 Definitions

We are trying to provide definitions of affective computing and multimodal
sentiment analysis in the context of our research. Those definitions may vary
depending on the context.

Affective Computing Affective computing is a field of Machine Learning
and Computer Science that studies the recognition and the processing of human
affects.

Multimodal Emotion Recognition Multimodal Emotion Recognition is
a relatively new discipline that aims to include text inputs, as well as sound
and video. This field has been rising with the development of social networks
that gave researchers access to a vast amount of data. Recent studies have been
exploring potential metrics to measure the coherence between emotions from the
different channels.

We are going to explore several categorical targets depending on the input
considered. Table 1 gives a summary of all the categorical targets we are evaluating
depending on the data type.

Data Type Categorical target

Textual Openness, Conscientiousness, Extraversion, Agreeableness, Neuroticism
Sound Happy, Sad, Angry, Fearful, Surprise, Neutral and Disgust
Video Happy, Sad, Angry, Fearful, Surprise, Neutral and Disgust

Table 1: Categorical target depending on the input data type.

For the text inputs, we are going to focus on the so-called Big Five, widely
used in personality surveys.

1.2 Research context

This research is made in the context of an exploratory analysis for the French
employment agency (Pole Emploi), and is part of the Big Data program at
Telecom ParisTech.

The research will explore state of the art multimodal sentiment analysis,
but will also focus on compliance in the context of General Data Protection
Regulation (GDPR).

The aim of this project is to provide candidates seeking for a job a platform
that analyses their answers to a set of pre-defined questions, as well as the
non-verbal part of a job interview through sound and video processing.

1.3 Data sources

We have chosen to diversify the data sources we used depending on the type
of data considered.
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For the text input, we are using data that was gathered in a study by Pen-
nebaker and King [1999]. It consists of a total of 2,468 daily writing submissions
from 34 psychology students (29 women and 5 men whose ages ranged from 18
to 67 with a mean of 26.4). The writing submissions were in the form of a course
unrated assignment. For each assignment, students were expected to write a
minimum of 20 minutes per day about a specific topic. The data was collected
during a 2-week summer course between 1993 to 1996. Each student completed
their daily writing for 10 consecutive days. Students’ personality scores were
assessed by answering the Big Five Inventory (BFI) [John et al., 1991]. The BFI
is a 44-item self-report questionnaire that provides a score for each of the five
personality traits. Each item consists of short phrases and is rated using a 5-point
scale that ranges from 1 (disagree strongly) to 5 (agree strongly). An instance in
the data source consists of an ID, the actual essay, and five classification labels
of the Big Five personality traits. Labels were originally in the form of either yes
(‘y’) or no (‘n’) to indicate scoring high or low for a given trait. It is important
to note that the classification labels have been applied according to answers to
a rather short self-report questionnaire : there might be a non-negligible bias
in the data due to both the relative simplicity of the BFI test compared to the
complexity of psychological features, and the cognitive biases preventing users
from providing a perfectly accurate assessment of their own characteristics.

For audio data sets, we are using the Ryerson Audio-Visual Database of
Emotional Speech and Song (RAVDESS). RAVDESS contains 7356 files (total
size: 24.8 GB). The database contains 24 professional actors (12 females, 12
males), vocalizing two lexically-matched statements in a neutral North American
accent. Speech includes calm, happy, sad, angry, fearful, surprise, and disgust
expressions, and song contains calm, happy, sad, angry, and fearful emotions. Each
expression is produced at two levels of emotional intensity (normal, strong), with
an additional neutral expression. All conditions are available in three modality
formats: Audio-only, Video-only and Audio-Video.”

For the video data sets, we are using the popular FER2013 Kaggle Challenge
data set. The data consists of 48x48 pixel grayscale images of faces. The faces
have been automatically registered so that the face is more or less centered and
occupies about the same amount of space in each image. The data set remains
quite challenging to use, since there are empty pictures, or wrongly classified
images.

1.4 Methodology

Our aim is to develop a model able to provide real time sentiment analysis
with a visual user interface using Tensorflow.js technology. Therefore, we have
decided to separate two types of inputs :

1. Textual input, such as answers to questions that would be asked to a person
from the platform

2. Video input from a live webcam or stored from an MP4 or WAV file, from
which we split the audio and the images.
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2 Text mining for personality trait classification

2.1 Theoretical foundations

2.1.1 Introduction

Emotion recognition through text is a challenging task that goes beyond
conventional sentiment analysis : instead of simply detecting neutral, positive or
negative feelings from text, the goal is to identify a set of emotions characterized
by a higher granularity. For instance, feelings like anger or happiness could be
included in the classification. As recognizing such emotions can turn out to be
complex even for the human eye, machine learning algorithms are likely to obtain
mixed performances. It is important to note that nowadays, emotion recognition
from facial expression tends to perform better than from textual expression.
Indeed, many subtleties should be taken into account in order to perform an
accurate detection of human emotions through text, context-dependency being
one of the most crucial. This is the reason why using advanced natural language
processing is required to obtain the best performance possible.

There exists different ways to tackle natural language processing problems,
the two main ones being rule-based and learning-based approaches. While rule-
based approaches tend to focus on pattern-matching and are largely based on
grammar and regular expressions, learning-based approaches put the emphasis
on probabilistic modeling and likelihood maximization. Here, we will mainly
focus on learning-based methods, and review some of the central methods, from
”traditional” classifiers to more advanced neural network architectures.

In the context of our study, we chose to use text mining in order not to detect
regular emotions such as disgust or surprise, but to recognize personality traits
based on the ”Big Five” model in psychology. Even though emotion recognition
and personality traits classification are two separate fields of studies based on
different theoretical underpinnings, they use similar learning-based methods
and literature from both areas can be interesting. The main motivation behind
this choice is to offer a broader assessment to the user : as emotions can only
be understood in the light of a person’s own characteristics, we thought that
analyzing personality traits would provide a new key to understanding emotional
fluctuations. Our final goal is to enrich the user experience and improve the quality
of our analysis : any appropriate and complementary information deepening our
understanding of the user’s idiosyncrasies is welcome

Many psychology researchers (starting with D. W. Fiske [1949], then Norman
[1963] and Goldberg [1981]), believe that it is possible to exhibit five categories,
or core factors, that determine one’s personality. The acronym OCEAN (for
openness, conscientiousness, extraversion, agreeableness, and neuroticism) is
often used to refer to this model. We chose to use this precise model as it is
nowadays the most popular in psychology : while the five dimensions don’t
capture the peculiarity of everyone’s personality, it is the theoretical framework
most recognized by researchers and practitioners in this field.
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Many linguistic-oriented tools can be used to derive a person’s personality
traits, for instance the individual’s linguistic markers (obtained using text analysis,
psycholinguistic databases and lexicons for instance). Since one of the earliest
studies in this particular field [Mairesse et al., 2007], researchers have introduced
multiple linguistic features and have shown correlations between them and the Big
Five. These features could therefore have a non-negligible impact on classification
performances, but as we stated before, we will mainly focus machine learning
methods and leave out the linguistic modeling as it does not fit into the spectrum
of our study.

Our main goal is to leverage on the use of statistical learning methods in
order to build a tool capable of recognizing the personality traits of an individual
given a text containing his answers to pre-established personal questions. Our
first idea was to record a user’s interview and convert the file from audio to text
: in this way we would have been able to work with similar data for text, audio
and video. Nevertheless, the good transcription of audio files to text requires
the use of expensive APIs, and the tools available for free in the market don’t
provide sufficient quality. This is the reason why we chose to apply our personality
traits detection model to short texts directly written by users : in this way we
can easily target particular themes or questions and provide indications of the
language level to use. As a result of this, we can make sure that the text data we
use to perform the personality traits detection is consistent with the data used
for training, and therefore ensure the highest possible quality of results. In the
following sections, we will go through some of the learning techniques that are
commonly used in order to perform personality traits recognition. These methods
are usually applied in a sequential way through a pipeline including preprocessing
steps in order to standardize the data, embedding in order to represent it as
a numerical vector, then the classification algorithm in order to predict labels.
Let’s focus on a few technical aspects.

2.1.2 Preprocessing

The preprocessing is the first step of our NLP pipeline : this is where we
convert raw text document to cleaned lists of words. In order to complete this
process, we first need to tokenize the corpus. This means that sentences are
split into a list of single words, also called tokens. Other preprocessing steps
include the use of regular expressions in order to delete unwanted characters
or reformat words. For instance, it is common to lowercase tokens, and delete
some punctuation characters that are not crucial to the understanding of the
text. The removing of stopwords in order to retain only words with meaning is
also an important step : it allows to get rid of words that are too common like
’a’, ’the’ or ’an’. Finally, there are methods available in order to replace words
by their grammatical root : the goal of both stemming and lemmatization is to
reduce derivationally related forms of a word to a common base form. Families
of derivationally related words with similar meanings, such as ’am’, ’are’, ’is’
would then be replace by the word ’be’. Finally, in the context of word sense
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disambiguation, part-of-speech tagging is used in order to mark up words in a
corpus as corresponding to a particular part of speech, based on both its definition
and its context. This can be used to improve the accuracy of the lemmatization
process, or just to have a better understanding of the meaning of a sentence.

2.1.3 Embedding

2.1.3.1 Bag-of-Word approaches

In order to run machine learning algorithms we need to convert the text files
into numerical feature vectors : we convert a collection of text documents to a
matrix of token counts, the number of features being equal to the vocabulary size
found by analyzing the data (each unique word in our dictionary corresponding
to a descriptive feature). The easiest and simplest way of counting this tokens is
to use raw counts (term frequencies).

tft,d = ft,d

Instead of using the raw frequencies of occurrence of tokens in a given
document it is possible to scale down the impact of tokens that occur very
frequently in a given corpus and that are hence empirically less informative than
features that occur in a small fraction of the training corpus. In order to do this,
we can use term frequencies adjusted for document length, also called TF-IDF
(or term frequency times inverse document frequency). Common words like (a,
an, the, etc.) will then have a lower weight.

tft,d =
∑
t′∈d

ft′,d

This choice of embedding using a document-term matrix has some disad-
vantages. As with most embedding methodologies, it requires to choose the
vocabulary size (which is a parameter that will greatly impact the sparsity of
the document representations) and the document-term matrix can end-up being
very sparse. The a priori choice of vocabulary is not the problem per se, but it is
this scarcity, intrinsically linked to the structure of the word representation in
bag-of-words approaches, that is the biggest disadvantage of this method, both
from the point of view of computational efficiency and information retrieval (as
there is little information in a large representation space). Finally, there can be a
loss of valuable information through discarding word order.

2.1.3.2 Word2Vec embedding

The Word2Vec embedding was first proposed by Mikolov et al. in “Efficient
Estimation of Word Representations in Vector Space” (2013). It generates dis-
tributed representations by assigning a real-valued vector for each word and
representing the word by the vector : we call the vector word embedding. The idea
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is to introduce dependency between words : words with similar context should
occupy close spatial positions. This is very different from the document-term
matrix where all words were considered independent from each others. The
Word2Vec method constructs the embedding using two methods in the context
of neural networks: Skip Gram and Common Bag Of Words (CBOW). Both
architectures can be used in order to produce embeddings.

Using one-hot encoding and considering the context of each word, the goal
of the CBOW methodology is to predict the word corresponding to the context.
For a single input word, for instance the word ”sunny” in the sentence ”What a
sunny weather today!”, the objective is to predict the one-hot encoding of the
target word ”weather” and minimize the output error between the predicted
vector and the target one. The vector representation of the target word is then
learned in the prediction process. More precisely, the neural network first takes
the V-dimensional one-hot encoding of the input word and maps it to the hidden
layer using a first weight matrix. Then, another weight matrix is used to map the
hidden layer outputs to the final V-dimensional prediction vector constructed
with the softmax values. It is important to note that there is no use of non-linear
activation functions (tanh, sigmoid, ReLu etc.) outside of the softmax calculations
in the last layer: the outputs are passed as simple weighted combination of the
inputs. This model can be extended to non-single context words : it is possible to
use multiple input context vectors, or a combination of them (sum or mean for
instance) in order to improve predictions. Indeed, if we define a context size of 2,
we will consider a maximum of 2 words on the left and 2 words on the right as
the surrounding words for each target word.For the sentence ”read books instead
of playing video games”, the context words for ”playing” with context size of 2
would be : (”instead”, ”of”, ”video”, ”games”) Using the CBOW methodology,
if the input is (”instead”, ”of”, ”video”, ”games”), then desired output for this
precise example is (”playing”). In the case where we have multiple input context
words, it is assumed that the same set of weights wij between input nodes and
hidden nodes are used. This leads to computing the output of the hidden node ’j’
as the average of the weighted inputs for all the context words.

The concept behind the Skip Gram architecture is the exact opposite of the
CBOW architecture : taking a word vector as input, the objective is to predict
the surrounding words (the number of context words to predict being a parameter
of the model). In the context of our previous example sentence with context size
of 2, if the input is (”playing”) then the desired output would be (”instead”,
”of”, ”video”, ”games”). For the Skip Gram architecture, we therefore assume
that we have multiple output layers and all output layers share the same set of
output weights w′jk.

According to various experimentations, it seems that the Skip Gram archi-
tecture performs slightly better than the CBOW architecture at constructing
word embeddings : this might be linked to the fact that the varying impacts of
different input context vectors are averaged out in the CBOW methodology. For
words which co-occur together many times in the text corpus, the model is more
likely to predict one of them at the output layer when the other one is given
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as the input. For example, given ”violin” as the input word to the Skip Gram
model, it is more likely to predict context words such as ”music” or ”instrument”
compared to words such as ”computer” or ”democracy”. We need to update the
output weights w′jk at the output layer for all words V in the vocabulary (where
V can be in billions). As this is the most time consuming computation in the
model, the authors of Word2Vec tried two different techniques in order to reduce
inefficiencies (the first one is the Hierarchical Softmax and the second one is
Negative Sampling, which we will not further discuss in this paper).

One approach for converting the word vector representations into the document-
term matrix is to take the sum (average, min/max etc.) of the word vectors of all
the words present in the document and use this as the vector representation for
the document. The authors of Word2Vec have also developed another version of
their methodology called Doc2Vec for directly training sentences and paragraphs
with the Skip Gram architecture instead of averaging the word vectors in the text.
We tried a similar approach in order to improve the accuracy of our classification:
instead of giving the whole list of token vectors to our classifier, we gave it
instead an average vector based on the TF-IDF weights. This method, while not
improving our accuracy, yielded satisfying results considering the magnitude of
the dimension reduction and therefore the potential information loss.

2.1.4 Classification algorithms

2.1.4.1 Multinomial Näıve Bayes and Support Vector Machines

Let’s first briefly introduce two families of classifiers that have been extensively
used in the context of NLP : multinomial naive bayes and support vector machines.
The multinomial naive bayes algorithm applies Bayes theorem : it is based on the
rather strong assumption that, in the context of classification, every feature is
independent of the others. This classifier will always output the category with the
highest a priori probability using Bayes theorem. This algorithm has a simple
and intuitive design, and is a good benchmark for classification purposes.

P (A|B) =
P (B|A)× P (A)

P (B)

Let’s take a concrete example to better understand the implications of this
naive rule : what is the probability that the expression ”bewitching melody” is
classified as ”music” ?

P (music|bewitching melody) =
P (bewitching melody|music)× P (music)

P (bewitching melody)

The goal here is only to determine whether or not the sequence ”bewitching
melody” can be classified as ”music” : we can therefore discard the denominator
and compare the two following values :
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P (bewitching melody|music)× P (music)

vs.

P (bewitching melody|not music)× P (not music)

The problem in this case is that in order to determine what the value of
P (bewitching melody|music) × P (music) is, we need to count the number of
occurrences of ”bewitching melody” in the sentences labelled as ”music”. But
what if this particular expression never appears in our training corpus ? The a
priori probability is null, leading to the value of P (bewitching melody|music)×
P (music) being null as well. This is where the naive Bayes hypothesis comes in
: as every word is supposed to be independent from the others, we can look at
the occurrence of each word in the expression instead of the entire expression
directly. The value we wish to compute can now be expressed as follows :

P (bewitching melody) = P (bewitching)× P (melody)

P (bewitching melody|music) = P (bewitching|music)× P (melody|music)

Here, we still have a problem : one of the words composing the sequence might
not be present in the training corpus, in which case the value of the formula
above will be null. An a priori frequency-based probability equal to zero can have
the undesirable effect of wiping out all the information in the other probabilities.
The solution is therefore to add some kind of smoothing, adding a correction
term to every probability estimate. The most popular approach is called Laplace
smoothing : given an observation x = (x1, . . . , xd) from a multinomial distribution
with N trials and parameter vector Θ = (Θ1, . . . , Θd), the smoothed version of
the data can be represented as follows :

Θ̂i =
xi + α

N + α× d
i = 1, ..., d,

where the pseudocount α > 0 is the smoothing parameter (α = 0 corresponds to
no smoothing). Let’s now briefly present the support vector machine algorithm.

This method does not focus on probabilities, but aims at creating a discriminant
function f : X −→ y. The intuition of SVM in the linearly separable case is to put
a line in the middle of two classes, so that the distance to the nearest positive
or negative instance is maximized. It is important to note that this ignores the
class distribution P (X|y). The SVM discriminant function has the form:

f(X) = wTx+ b

The classification rule is sign(f(X)), and the linear decision boundary is
specified by f(x) = 0. If f separates the data, the geometric distance between a

point x and the decision boundary is yf(X)
‖w‖
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Given training data, the goal is to find a decision boundary w, b that maximizes
the geometric distance of the closest point. The optimization objective is therefore:

max
w,b

n
min
i=1

yi(w
Txi + b)

‖w‖

This optimization objective can be re-written with an additional constraint,
considering the fact that the objective is the same for kŵ, kb̂ for any non-zero
scalng factor k :

min
w,b

1

2
‖w‖2

subject to yi(w
Txi + b) ≥ 1, i = 1, . . . , n.

In the case where we don’t make any assumption the linear separability of
the training data, we relax the constraints by making the inequalities easier to
satisfy. This is done with slack variables ξi ≥ 0, one for each constraint. The sum
of ξi is penalized in order to avoid points being on the wrong side of the decision
boundary while still satisfying the constraint with large ξi. The new problem can
in this case be expressed as follows :

min
w,b,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to yi(w
Txi + b) ≥ 1− ξi, i = 1, . . . , n, ξi ≥ 0,

Solving this objective leads to the dot product xiTxj , which allows SVM to
be kernelized (using what is usually called the kernel trick), but we won’t give
much more details on the resolution of the equations.

2.1.4.2 Recurrent Neural Networks and LSTM

Recurrent neural networks leverage on the sequential nature of information :
unlike regular neural network where inputs are assumed to be independent of
each other, these architectures progressively accumulate and capture information
through the sequences.
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(a) RNN
cell

(b) Corresponding unfolded network

As we can see on the schema above, if the sequence we care about has a length
of 5, the network would be unrolled into a 5-layer neural network, one layer for
each instance. More precisely, xt is the input at time step t. For example, x0
could be embedding vector corresponding to the first word of a sentence. st is the
hidden state at time step t : it corresponds to the memory of the network. st is
generally computed through a non linear function based on the previous hidden
state st+1 and the input at the current step: st = f(Uxt + Wst−1). ot is the
output at step t. It could be a vector of probabilities across a corpus vocabulary
if we wanted to predict the next word in a sentence (in this case for instance,
ot = softmax(V st)).

Long Short Term Memory architectures, introduced by Hochreiter Schmid-
huber [1997], have an edge over conventional feed-forward neural networks and
RNN. Indeed, LSTMs have the property of selectively remembering patterns
for long durations of time. This is made possible by what is called a memory
cell. Its unique structure is composed of four main elements : an input gate, a
neuron with a self-recurrent connection, a forget gate and an output gate. The
self-recurrent connection ensures that the state of a memory cell can remain
constant from one timestep to another. The role of the gates is to fine-tune the
interactions between the memory cell and its environment using a sigmoid layer
and a point-wise multiplication operation.

The sigmoid layer outputs numbers between zero and one, describing how
much of each component should be let through. A value of zero means “let
nothing through,” while a value of one means “let everything through!”

Fig. 1: LSTM memory cell
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While the input gate can either allow incoming signal to alter the state of
the memory cell or block it, the output gate can either allow the state of the
memory cell to have an effect on other neurons or prevent it. Finally, the forget
gate can influence the memory cell’s self-recurrent connection, allowing the cell
to remember or forget its previous state.

2.2 Choice of model

Let’s now simply provide a list of the different steps of our pipeline in order to
sum up the information given above and give more details about our final choices.
This precise pipeline is the one that obtained the highest accuracy among all the
combinations we have tried.

1. Preprocessing
– Tokenization of the document
– Standardization of formulations using regular expressions (for instance

replacing ”can’t” by ”cannot”, ”’ve” by ” have”)
– Deletion of the punctuation
– Lowercasing the tokens
– Removal of predefined stopwords (such as ’a’, ’an’ etc.)
– Application of part-of-speech tags remaining tokens
– Lemmatization of tokens using part-of-speech tags for more accuracy.
– Padding the sequences of tokens of each document to constrain the shape

of the input vectors. The input size has been fixed to 300 : all tokens
beyond this index are deleted. If the input vector has less than 300 tokens,
zeros are added at the beginning of the vector in order to normalize the
shape. The dimension of the padded sequence has been determine using
the characteristics of our training data. The average number of words in
each essay was 652 before any preprocessing. After the standardization of
formulations, and the removal of punctuation characters and stopwords,
the average number of words dropped to with a standard deviation of . In
order to make sure we incorporate in our classification the right number
of words without discarding too much information, we set the padding
dimension to 300, which is roughly equal to the average length plus two
times the standard deviation.

2. Embedding
– Each token is replaced by its embedding vector using Google’s pre-trained

Word2Vec vectors in 300 dimensions (which is the largest dimension
available and therefore incorporates the most information), and this
embedding is set to be trainable (our training corpus is to small to train
our own embedding).

3. Classifier
– Neural network architecture based on both one-dimensional convolutional

neural networks and recurrent neural networks. The one-dimensional
convolution layer plays a role comparable to feature extraction : it allows
finding patterns in text data. The Long-Short Term Memory cell is then
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used in order to leverage on the sequential nature of natural language
: unlike regular neural network where inputs are assumed to be inde-
pendent of each other, these architectures progressively accumulate and
capture information through the sequences. LSTMs have the property of
selectively remembering patterns for long durations of time. Our final
model first includes 3 consecutive blocks consisting of the following four
layers : one-dimensional convolution layer - max pooling - spatial dropout
- batch normalization. The numbers of convolution filters are respectively
128, 256 and 512 for each block, kernel size is 8, max pooling size is 2
and dropout rate is 0.3. Following the three blocks, we chose to stack 3
LSTM cells with 180 outputs each. Finally, a fully connected layer of 128
nodes is added before the last classification layer.

2.3 Results

We tested different combinations of embeddings and classifiers in order to
compare results. As explained at the end of the part on Word2Vec embeddings, we
tried a hybrid model using averaged vector representations using TF-IDF weights
: there is a loss of accuracy compared to the complete Word2Vec embedding, but
results are better than the regular TF-IDF embedding. Let’s provide the details
of the accuracy obtained with each combination that we tested in our pipeline:

Model EXT NEU AGR CON OPN

TF-IDF + MNB 45.34 45.11 45.24 45.31 45.12
TF-IDF + SVM 45.78 45.91 45.41 45.54 45.56
Word2Vec + MNB 45.02 46.01 46.34 46.38 45.97
Word2Vec + SVM 46.18 48.21 49.65 49.97 50.07
Word2Vec (TF-IDF averaging) + MNB 45.87 44.99 45.38 44.21 44.84
Word2Vec (TF-IDF averaging) + SVM 46.01 46.19 47.56 48.11 48.89
Word2Vec + NN (LSTM) 51.98 50.01 51.57 51.11 50.51
Word2Vec + NN (CONV + LSTM) 55.07 50.17 54.57 53.23 53.84

2.4 Possible improvements

In order to improve our accuracy, we could use hybrid models including both
learning-based methods and linguistic features : adding lexicon-based features,
using psycholinguistic databases, or even adding home-made features based on
psychological research should have a positive impact on our accuracy scores.
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3 Signal processing for emotion recognition

3.1 Theoretical foundations

3.1.1 Introduction

Speech emotion recognition purpose is to automatically identify the emotional
or physical state of a human being from his voice. The emotional state of a
person hidden in his speech is an important factor of human communication and
interaction as it provides feedbacks in communication while not altering linguistic
contents.

The usual process for speech emotion recognition consists of three parts:
signal processing, feature extraction and classification. Signal processing applies
acoustic filter on original audio signals and splits it into meaningful units. The
feature extraction is the sensitive point in speech emotion recognition because
features need to both efficiently characterize the emotional content of a human
speech and not depend on the lexical content or even the speaker. Finally, emotion
classification will map feature matrix to emotion labels.

Fig. 2: Speech emotion recognition pipeline

In the following section, we will present in more details the audio feature
extraction methodology and different relevant speech features typically used for
speech emotion recognition.

3.1.2 Signal preprocessing

Following points describe audio signal preprocessing before audio features
extraction.
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3.1.2.1 Pre-emphasis filter

First, before starting feature extractions, it’s advisable to apply a pre-emphasis
filter on the audio signal to amplify all the high frequencies. A pre-emphasis filter
has several advantages: it allows balancing the frequency spectrum since high
frequencies usually have smaller magnitudes compared to lower ones and also
avoid numerical problems on the Fourier Transform computation.

yt = xt − αxt−1

Typical values for the pre-emphasis filter coefficient α are 0.95 or 0.97.

3.1.2.2 Framing

After the pre-emphasis filter, we have to split audio signal into short-term
windows called frames. For speech processing, window size is usually ranging
from 20ms to 50ms with 40% to 50% overlap between two consecutive windows.
Most popular settings are 25ms for the frame size with a 15ms overlap (10ms
window step).

The main motivation behind this step is to avoid the loss of frequency contours
of an audio signal over time because audio signals are non-stationary by nature.
Indeed, frequency properties in a signal change over time, so it does not really
make sense to apply the Discrete Fourier Transform across the entire sample. If
we suppose that frequencies in a signal are constant over a very short period of
time, we can apply Discrete Fourier Transform over those short time windows
and obtain a good approximation of the frequency contours of the entire signal.

3.1.2.3 Hamming

After splitting the signal into multiple frames, we multiply each frame by
a Hamming window function. It allows reducing spectral leakage or any signal
discontinuities and improving the signal clarity. For example, if the beginning and
end of a frame don’t match then it will look like discontinuity in the signal and
will show up as nonsense in the Discrete Fourier Transform. Applying Hamming
function makes sure that beginning and end match up while smoothing the signal.

Following equation describes the Hamming window function:

Hn = α− βcos( 2πn

N − 1
)

where α = 0.54, β = 0.46 and 0 ≤ n ≤ N − 1 with N the window length.
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3.1.2.4 Discrete Fourier Transform

The Discrete Fourier Transform is the most widely used transforms in all area
of digital signal processing because it allows converting a sequence from the time
domain to the frequency domain. DCT provides a convenient representation of
the distribution of the frequency content of an audio signal.

The majority of audio features used to analyze speech emotion are defined in
the frequency domain because it reflects better the properties of an audio signal.

Given a discrete-time signal xn n = 0, . . . N − 1 (N samples long) the Discrete
Fourier Transform can be defined as

Xk =

N−1∑
n=0

xke
−i2π
N kn k = 0, ..., N − 1

The Discrete Fourier Transform output is a sequence of N coefficients Xk con-
stituting the frequency domain representation of a signal. The inverse Discrete
Fourier Transform takes Discrete Fourier coefficient and returns the original
signal in time-domain:

xn =
1

N

N−1∑
k=0

xne
i2π
N kn n = 0, ..., N − 1

3.1.3 Short-term audio features

Once partitioning done, we can extract features from time and frequency
domains for each frame. Features from the time domain are directly extracted
from the raw signal samples while frequency features are based on the magnitude
of the Discrete Fourier Transform.

3.1.3.1 Time-domain features

In following formulas, xi(n), n = 0, ..., N − 1 is the nth discrete time signal
of the ith frame and N the number of samples per frame (window size).

• Energy: Sum of squares of the signal values, normalized by the respective
frame length

Ei =
1

N

N−1∑
n=0

| xi(n) |2

• Entropy of energy: Entropy of sub-frames normalized energies. It permits
to measure abrupt changes in the energy amplitude of an audio signal.
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To compute the Entropy of Energy of ith frame, we first divide each frame in
K sub-frames of fixed duration. Then we compute Energy of each sub-frame
and divide it by the total Energy of the frame Ei:

ej =
EsubFramej

Ei

where

Ei =

K∑
j=1

EsubFramej

Finally, the entropy Hi is computed according to the equation:

Hi = −
K∑
j=1

ej .log2(ej)

• Zero Crossing rate: Rate of sign-changes of an audio signal

ZCRi =
1

2N

N−1∑
n=0

| sgn[xi(n)]− sgn[xi(n− 1)] |

Where sgn(.) is the sign function.

3.1.3.2 Frequency-domain features

In following formulas, Xi(k), k = 0, ..., N − 1 is the kth Discrete Fourier
Transform (DCT) coefficient of the ith frame and N is the number of samples
per frame (window size).

• Spectrogram: The spectrogram of a nonstationary signal is an estimate of
the time evolution of its frequency content. It shows on a two-axis diagram
3 parameters: time in x-axis, frequency on y-axis and sound power (in dB)
by different color intensity. To compute signal spectrogram you only have to
convert DCT coefficients from power to decibels. The relationship between
power and decibels is:

ydB = 10 ∗ log10(y).

• Log-mel-spectrogram: The mel-frequency scale is a quasi-logarithmic spac-
ing roughly resembling the resolution of the human auditory system. To com-
pute log-mel-spectrogram you only have to apply the Mel-spaced filterbank
(set of L triangular filters) to the audio spectrogram and get the logarithm of
the result.
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Fig. 3: Log-mel-spectrogram of an audio signal

• Spectral centroid: Center of gravity of the sound spectrum.

Ci =

N−1∑
k=0

kXi(k)

N−1∑
k=0

Xi(k)

• Spectral spread: Second central moment of the sound spectrum.

Si =

√√√√√√√√
N−1∑
k=0

(k − Ci)2Xi(k)

N−1∑
k=0

Xi(k)

• Spectral entropy: Entropy of sub-frames normalized spectral energies. To
compute the spectral entropy of ith frame, we first divide each frame in K
sub-frames of fixed size. Then we compute spectral Energy (similar formula
as time-domain energy) of each sub-frame and divide it by the total Energy
of the frame. The spectral entropy Hi is then computed according to the
equation:

Hi = −
K∑
k=1

nk.log2(nn)

with

nk =
EsubFramek
K∑
j=1

EsubFramej
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• Spectral flux: Squared difference between the normalized magnitudes of the
spectra of the two successive frames. It allows mesuring the spectral changes
between to frame.

Fi =

N−1∑
k=0

[ENi(k)− ENi−1(k)]2

with

ENi(k) =
Xi(k)

N−1∑
l=0

Xi(l)

• Spectral rolloff : Frequency below which 90% of the magnitude distribution
of the spectrum is concentrated. The lth DFT coefficients correspond to the
spectral rolloff if it satisfies the following conditions:

l−1∑
k=0

Xi(k) = 0.90

N−1∑
k=0

Xi(k)

• MFCCs: Mel Frequency Cepstral Coefficients model the spectral energy
distribution in a perceptually meaningful way. Those features are the most
widely used audio features for speech emotion recognition. Following process
permits to compute the MFCCs of the ith frame: Calculate the periodogram
of the power spectrum of the ith frame:

Pi(k) =
1

N
| Xi(k) |2

Apply the Mel-spaced filterbank (set of L triangular filters) to the periodogram
and calculate the energy in each filter. Finally, we take the Discrete Cosinus
Transform (DCT) of the logarithm of all filterbank energies and only keep
first 12 DCT coefficients Cll=1,...,12:

Cli =

L∑
k=1

(logẼki )cos[l(k − 1

2
)
π

L
] l = 1, ..., L

where Ẽk is the energy at the ouptut of the kth filter on the ith frame.
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3.2 Choice of model

3.2.1 Input

The RAVDESS database was used in order to evaluate our methodology in
this paper. It contains acted emotions speech of male and female actors (gender
balanced) that were asked to pretend six different emotions (happy, sad, angry,
disgust, fear, surprise and neutral) at two levels of emotional intensity. Following
table presents a summary of emotion distribution in RAVDESS:

RAVDESS

Emotions Happy Sad Angry Scared
Dis-

gusted
Sur-

prised
Neutral Total

Man 96 96 96 96 96 96 96 672
Woman 96 96 96 96 96 96 96 672

Total 192 192 192 192 192 192 192 1344

Table 2: RAVDESS database summary

Based on Thurid Vogt and Elisabeth André research: Improving Au-
tomatic Emotion Recognition from Speech via Gender Differentiation (2006),
we decided to separate out the male and female emotions using the identifiers
provided by each database and to implement gender-dependent emotion classifiers
rather than gender-independent ones. In their paper, separating male and female
voices improved the overall recognition rate of their classifier by 2-4%.

3.2.2 Feature extraction

Once having extracted the speech features from the preprocessed audio signal
(detailed on previous section) we obtain a matrix of features per audio file. We
compute then the first derivatives of each of those features to capture frame to
frame changes in the signal. Finally, we calculate the following global statistics
on these features: mean, median, standard deviation, kurtosis, skewness, 1%
percentile, 99% percentile, min, max and range between min and max. Thereby
a vector of 200 candidate features is obtained for each audio signal.

Some post-processing also may be necessary before training and testing
the classifier. First, normalization could be meaningful as extracted feature
values have different orders of magnitude or different units. Secondly, it is also
common to use dimensionality reduction techniques in order to reduce the
memory and computation requirements of the classifier. There are two options
for dimensionality reduction: features selection (statistical tests) and features
transformation (Principal Component Analysis).
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Fig. 4: Signal processing and audio feature extraction schema

3.2.3 Classifier

In literature, various machine learning algorithms based on acoustic features
(presented in previous section) are utilized to construct satisfying classifiers for
hidden emotion detection in a human speech. Support Vector Machines (SVM)
is the most popular and the most often successfully applied algorithm for speech
emotion recognition but recent work presents new approaches more sophisticated
using a combination of convolutional and recurrent neural network.

3.2.3.1 SVM

SVM is a non-linear classifier transforming the input feature vectors into a
higher dimensional feature space using a kernel mapping function. By choosing
appropriate non-linear kernels functions, classifiers that are non-linear in the
original space can therefore become linear in the feature space. Most common
kernel function are described below:

• linear kernel: K(xi, xj) = xi ∗ xj

• radial basis function (rbf) kernel: K(xi, xj) = exp(− ||xi−xj ||
2

2σ2 )

• d-degree polynomial kernel: K(xi, xj) = (xi ∗ xj + γ)d

State of the art paper ”Speech emotion recognition: Features and classification
models” by L. Chen, X. Mao, Y. Xue, and L. L. Cheng achieved an accuracy
of 86.5% by combining principal component analysis and SVM respectively for
dimensionality reduction and classification. Some sophisticated classifiers do
achieve higher recognition rates than simple SVM but not much.
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3.2.3.2 Time distributed convolutional neural network

Convolutional Neural Networks (CNNs) show remarkable recognition perfor-
mance for computer vision tasks while Recurrent Neural Networks (RNNs) show
impressive achievement in many sequential data processing tasks. The concept of
time distributed convolutional neural network is to combine a deep hierarchical
CNNs feature extraction architecture with a recurrent neural network model that
can learn to recognize sequential dynamics in a speech signal.

Unlike the SVM approach, we will no longer work on global statistics generated
on features from time and frequency domain. This network only takes the log-
mel-spectrogram (presented in previous section) as input.

The main idea of time distributed convolutional neural network is to apply a
rolling window (fixed size and time-step) all along the log-mel-spectrogram. Each
of these windows will be the entry of a convolutional neural network, composed
by four Local Feature Learning Blocks (LFLBs) and the output of each of these
convolutional networks will be fed into a recurrent neural network composed
by 2 cells LSTM (Long Short Term Memory) to learn the long-term contextual
dependencies. Finally, a fully connected layer with softmax activation is used to
predict the emotion detected in the voice.

Fig. 5: Time distributed Convolutional Neural Network schema
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Name Output dim Kernel Stride Other

LFLB1

Conv M x N x 64 3 x 3 1 x 1 64 filters
BatchNorm M x N x 64 – – –
Activation M x N x 64 – – Elu
Max Pool M/2 x N/2 x 64 2 x 2 2 x 2 –
Dropout M/2 x N/2 x 64 – – 0.3

LFLB2

Conv M/2 x N/2 x 64 3 x 3 1 x 1 64 filters
BatchNorm M/2 x N/2 x 64 – – –
Activation M/2 x N/2 x 64 – – Elu
Max Pool M/8 x N/8 x 64 4 x 4 4 x 4 –
Dropout M/8 x N/8 x 64 – – 0.3

LFLB3

Conv M/8 x N/8 x 128 3 x 3 1 x 1 128 filters
BatchNorm M/8 x N/8 x 128 – – –
Activation M/8 x N/8 x 128 – – Elu
Max Pool M/32 x N/32 x 128 4 x 4 4 x 4 –
Dropout M/32 x N/32 x 128 – – 0.3

LFLB4

Conv M/32 x N/32 x 128 3 x 3 1 x 1 128 filters
BatchNorm M/32 x N/32 x 128 – – –
Activation M/32 x N/32 x 128 – – Elu
Max Pool M/128 x N/128 x 128 4 x 4 4 x 4 –
Dropout M/128 x N/128 x 128 – – 0.3

LSTM 256 – – –
Fully Connected 7 labels – – –

Table 3: Layer parameters of time distributed convolutional neural network

3.3 Empirical results

In the next section we will try to get as close as possible to the state of the
art performances.

3.3.1 SVM

We first implemented SVM classifiers based on different kernel functions
(linear, polynomial and RBF), without dimensionality reduction and gender
differentiation. Speech emotion recognition accuracies shown in next table were
relatively low. However, the SVM with RBF kernel functions seems to be the
best performer with an accuracy rate of 56.51%. Then we applied both feature
selection (1%-Chi-squared test removed 75 features) and feature transformation
(PCA) to reduce the dimension of the features. For PCA, three levels of explained
variance were tested (90%, 95% and 98%) respectively leading to the following
features dimensions : 100, 120 and 140. Our performances were still very low but
the accuracy of polynomial and RBF increased respectively by 6% and 3% with
the 140 feature dimension corresponding to the 98% contribution. RBF kernel
still remains the best classifier.
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PCA dimension linear poly (2) poly (3) rbf

None 51.67% 54.28% 52.79% 56.51%

140 53.53% 50.19% 52.79% 59.48%

120 55.02% 50.56% 52.79% 58.74%

100 52.79% 48.33% 52.79% 58.36%

Table 4: Different dimension and different kernel cross-validation accuracy rate

The first major improvement was observed with the implementation of gender
differentiation as suggested in previous section. As shown in the following table,
accuracy scores of almost all classifier (except for 3-degree polynomial) increased
by almost 5%. The next figure illustrates accuracy rates obtained by cross-
validation and the confusion matrix of the classifier with the highest accuracy
score: RBF Kernel and PCA 180 features dimension (corresponding to 98%
contribution).

PCA dimension linear poly (2) poly (3) rbf

None 53.23% 55.02% 54.28% 60.59%

120 59.85% 55.39% 55.76% 64.20%

Table 5: Gender differentiation - Cross-validation accuracy rate for different
dimension and different kernel.

Predicted labels

Happy Sad Angry Scared Neutral Dis-
gusted

Sur-
prised

A
c
tu

a
l
la
b
e
ls

Happy 65.9% 4.9% 7.3% 0.0% 7.3% 14.6% 0.0%
Sad 17.9% 61.5% 7.7% 7.7% 0.0% 0.0% 5.1%

Angry 7.9% 5.3% 63.2% 2.6% 0.0% 5.3% 15.8%
Scared 5.3% 5.3% 0.0% 76.3% 7.9% 2.6% 2.6%
Neutral 10.3% 5.1% 7.7% 5.1% 53.8% 10.3% 7.7%

Disgusted 4.5% 0.0% 4.5% 4.5% 6.8% 72.7% 6.8%
Surprised 3.3% 20.0% 3.3% 6.7% 6.7% 3.3% 56.7%

Table 6: Confusion Matrix of best classifier

As can be seen above, Surprise and Neutral emotions were classified with the
poorest accuracy compared to other emotions such as Scared and Disgust who
achieved the highest results (respectively 76% and 73%). RAVDESS database
contains speeches for 7 different emotions but we decided to remove Surprise,
as our classifier had trouble differentiating it from other emotions. Final results
have been quite satisfying. We have succeeded to obtain an accuracy score of
almost 75% as shown in following table.



27

PCA dimension linear poly (2) poly (3) rbf

None 63.34% 59.74% 65.80% 70.26%

120 54.50% 63.20% 64.94% 74.46%

Table 7: 6-way emotions - Cross-validation accuracy rate for different dimension
and different kernel.

Predicted labels

Happy Sad Angry Scared Neutral Dis-
gusted

A
c
tu

a
l
la
b
e
ls Happy 80.0% 0.0% 5.7% 5.7% 5.7% 2.9%

Sad 8.1% 81.1% 0.0% 0.0% 2.7% 8.1%
Angry 6.3% 6.3% 75% 0.0% 6.3% 6.3%
Scared 6.7% 0.0% 4.4% 71.1% 8.9% 8.9%
Neutral 11.1% 5.6% 2.8% 8.3% 66.7% 5.6%

Disgusted 0.0% 8.7% 0.0% 4.3% 2.2% 84.8%
Table 8: Confusion Matrix of best classifier - 6-way emotions

3.3.2 Time distributed Convolutional Neural Network

In this part, we present the results obtained with the deep learning model
whose architecture has been presented in the previous sections.

To limit overfitting during training phase, we split our data set into train
(80%), validation (15%) and test set (5%). We also added early stopping to stop
the training when the validation accuracy starts to decrease while the training
accuracy steadily increases. We chose Stochastic Gradient Descent with decay
and momentum as optimizer and a batch size of 64.

Following graphics present loss (categorical cross-entropy) and accuracy for
both train and validation set:

Fig. 6: Loss and accuracy on training and validation set
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Our model allows us to obtain a maximum score of 74% on the validation
set. Thanks to a Keras functionality called ModelCheckpoint we have been
able to save the weights associated to the best model, allowing us to obtain a
score of 72% on the test set.

The use of deep learning and time distributed convolutional neural network
allow us to achieve a 10% higher performance compared to the traditional
approach using SVM.

3.4 Potential improvements

Our model presents reasonably satisfying results. Our prediction recognition
rate is around 65% for 7-way (happy, sad, angry, scared, disgust, surprised,
neutral) emotions and 75% for 6-way emotions (surprised removed). In order to
improve our results and to try to get closer to the state of the art, we will try
to implement more sophisticated classifiers in second period of this project. For
example, Hidden Markov Model (HMM) and Convolutional Neural Networks
(CNN) seem to be potential good candidates for speech emotion recognition.
Unlike SVM classifiers, those classifiers are train on short-term features and not
on global statistics features. HMM and CNN are considered to be advantageous
for better capturing the temporal dynamic incorporated in speech.

To implement a multimodal model for emotion recognition we will also need
to set up the removal of silence and probably build a speaker identifier to not
bias our emotion predictions in the speech domain.
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4 Computer vision for emotion recognition

4.1 Theoretical foundations

4.1.1 Introduction

In the field of facial emotion recognition, most recent research papers focus on
deep learning techniques, and more specifically on Convolution Neural Network
(CNN). The aim of the following section is to develop the basis of CNNs.

4.1.2 Convolution Neural Network

CNNs are special types of neural networks for processing data with grid-like
topology.

Fig. 7: Typical CNN architecture

In more traditional approaches, a great part of the work was to select the
filters (e.g Gabor filters) and the architecture of the filters in order to extract as
much information from the image as possible. With the rise of deep learning and
greater computation capacities, this work can now be automated. The name of
the CNNs comes from the fact that we convolve the initial image input with a
set of filters. The parameter to choose remains the number of filters to apply, the
dimension of the filters, and the stride length. The stride length is the step by
which we convolve the filter on the image. Typical values for the stride length lie
between 2 and 5.

In some sense, we are building a convolved output that has a volume. It’s no
longer a 2 dimensional picture. The filters are hardly humanly understandable,
especially when we use a lot of them. Some are used to find curves, other edges,
other textures... Once this volume has been extracted, it can be flattened and
passed into a dense Neural Network.
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Mathematically, the convolution is expressed as :

(f ∗ g)(t) =

∫ +∞

−∞
f(τ)g(t− τ)∂τ

The convolution represents the percentage of area of the filter g that overlaps
with the input f at time τ over all time t. However, since τ < 0 and τ > t have
no meaning, the convolution can be reduce to :

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ)∂τ

At each convolution step, for each input, we apply an activation function
(typically ReLU). So far, we have only added dimensionality to our initial image
input. To reduce the dimension, we then apply a pooling step. Pooling involves a
down sampling of features so that we need to learn less parameters when training.
The most common form of pooling is max-pooling. For each of the dimension
of each of the input image, we perform a max-pooling that takes, over a given
height and width, typically 2x2, the maximum value among the 4 pixels. The
intuition is that the maximal value has higher chances to be more significant
when classifying an image.

Fig. 8: Illustration of a max pooling step

The ingredients of a convolution neural network are the following:

• the convolution layer
• the activation layer (applying an activation function)
• the pooling layer
• the fully connected layer, similar to a dense neural network

The order of the layers can be switched :
ReLU(MaxPool(Conv(X))) = MaxPool(ReLU(Conv(X)))
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In image classification, we usually add several layers of convolution and
pooling. This allows us to model more complex structures. Most of the model
tuning in deep learning is to determine the optimal model structure. Some famous
algorithms developed by Microsoft or Google reach a depth of more than 150
hidden layers.

4.2 Data exploration and visualization

First of all, when exploring the data of the FER2013 data set, we observe
that there is an imbalance in the number of images by class (emotion).

Fig. 9: Emotion distribution: Angry (0), Disgust (1), Fear (2), Happy (3), Sad
(4), Surprise (5) and Neutral (6)

The train set has 28709 images, the test set has 3589 images. For each image,
the data set contains the grayscale color of 2304 pixels (48x48), as well as the
emotion associated.

The challenge is that some pictures are miss-classified, while other images
only show part of a face. For example, the two images of Figure 13 seem rather
clearly miss-classified.

Fig. 10: Example of miss-classified images
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We can then take a look at the important regions of the image when it
comes to classification tasks. The feature importance is evaluated with a simple
XGBoost classifier on the flattened images. We notice that the most important
regions seem to be more or less located around the eyes, and around the mouth.

Fig. 11: Heatmap of the feature importance

It might be interesting to look at the average face per emotion with our data.
Thanks to this representation, we can understand the way an emotion is being
interpreted within our data.

We notice how the axis of the eyes for the anger is different from the happiness
for example.

Fig. 12: Average Face per emotion
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4.3 A first simple model

State of the art paper ”Facial Expression Recognition using Convolutional
Neural Networks: State of the Art” by Christopher Pramerdorfer and Martin
Kampel implement deep learning solutions and outperform all classical SVM
algorithms in the literature. For this reason, deep learning approaches will be
presented in the next section.

Fig. 13: Keras model summary

This simple architecture produces over 440’000 parameters to estimate. The
computation time is around 8 hours on local machine. In order to prevent
overfitting, we also apply Keras built-in data generation module, and add batch-
normalization.

The optimizer we chose is RMSprop, an optimizer that divides the learning
rate by an exponentially decaying average of squared gradients. The loss we use
is the categorical cross-entropy, since we face a classification problem. Finally,
the metric we use is the accuracy.

When plotting the accuracy and the loss in terms of the epochs, on both the
training and the validation set, we observe a rather clear overfitting that occurs
after approximately 20 epochs. Solutions will be addressed in the next section.
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Fig. 14: Accuracy on training and validation set

We seem to face an issue of overfitting. For this reason, the next section will
detail the approach that has been selected and the results that have been reached
with such approach.

This simple CNN architecture allows for an easy interpretability. We can
indeed plot class activation maps, which display the pixels that have been
activated by the last convolution layer.

We notice how the pixels are being activated differently depending on the
emotion being labeled. The happiness seems to depend on the pixels linked to
the eyes and mouth, whereas the sadness or the anger seem for example to be
more related to the eyebrows.

Fig. 15: Class Activation Map
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4.4 Selected approach

One of the main challenges in this task is to limit overfitting. Indeed, due to
the large class imbalance and the number of parameters that need to be learned,
the models can easily overfit.

For this reason, several approaches and techniques have been developed and
implemented. In the next sections, we will cover the main techniques, and the
outcomes of these different techniques, as well as the final model that has been
implemented.

4.4.1 Dimension Reduction through Auto-Encoding

The first step that was implemented was to auto-encode the images in order
to reduce the dimension. The implemented auto-encoder proposes a dimension
reduction of more than 95%, by reducing the input image to a dimension of 12 *
12 pixels.

Fig. 16: Auto-Encoding the input images

Through the encoding, we loose a lot of information. This might be problematic
since we do not manage to fully understand the main features, although the
restriction of 12 * 12 might seem a bit ambitious.
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Since auto-encoding allows dimension reduction, we can again reduce the
dimension to a dimension of 2 in order to be able to represent the different classes
on a simple graph using T-Stochastic Neighbor Embedding (TSNE)techniques.

Fig. 17: TSNE

4.5 XCeption and Depthwise Separable convolutions

Xception is a deep convolutional neural network architecture that involves
Depthwise Separable Convolutions. It was developed by Google researchers.
Google presented an interpretation of Inception modules in convolutional neural
networks as being an intermediate step in-between regular convolution and the
depthwise separable convolution operation (a depthwise convolution followed by
a pointwise convolution). In this light, a depthwise separable convolution can be
understood as an Inception module with a maximally large number of towers.
This observation leads them to propose a novel deep convolutional neural network
architecture inspired by Inception, where Inception modules have been replaced
with depthwise separable convolutions.

The data first goes through the entry flow, then through the middle flow which
is repeated eight times, and finally through the exit flow. Note that all Convolution
and SeparableConvolution layers are followed by batch normalization.
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Fig. 18: XCeption Structure

Xception architecture has overperformed VGG-16, ResNet and Inception V3
in most classical classification challenges.It is an efficient architecture that relies
on two main points :

• Depthwise Separable Convolution
• Shortcuts between Convolution blocks as in ResNet

Depthwise Separable Convolutions are alternatives to classical convolutions
that are supposed to be much more efficient in terms of computation time.

First of all, let’s take a look at convolutions. Convolution is a really expensive
operation. Let’s illustrate this :

Fig. 19: Convolutions
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The input image has a certain number of channels C, say 3 for a color image.
It also has a certain dimension A, say 100 * 100. We apply on it a convolution
filter of size d*d, say 3*3.

For 1 Kernel, we have a huge number of operations :

K2 × d2 × C

Where K is the resulting dimension after convolution, which depends on the
padding applied (e.g padding “same” would mean A = K).

Therefore, for N Kernels (depth of the convolution) :

K2 × d2 × C ×N

To overcome the cost of such operations, depthwise separable convolutions
have been introduced. They are themselves divided into 2 main steps :

• Depthwise Convolution
• Pointwise Convolution

4.5.1 Depthwise convolutions

Depthwise Convolution is a first step in which instead of applying a convolution
of size d× d× C, we apply a convolution of size d× d× 1.

In other words, we don’t make the convolution computation over all the
channels, but only 1 by 1. Here is an illustration of the Depthwise convolution
process :

Fig. 20: Depthwise Convolution

This creates a first volume that has a size K ×K × C, and not K ×K ×N
as before. Indeed, so far, we only made the convolution operation for 1 kernel
per filter of the convolution, not for N of them. This leads us to our second step.
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4.5.2 Pointwise convolutions

Pointwise convolution operates a classical convolution, with size 1× 1×N
over the K ×K ×Cvolume. This allows to create a volume of shape K ×K ×N
as previously.

Fig. 21: Pointwise Convolution

This process reduces the total number of operations compared to convolutions
by a factor proportional to 1

N .

4.5.3 XCeption architecture

XCeption offers an architecture that is made of Depthwise Separable Convo-
lution blocks and Maxpooling, all linked with shortcuts as in ResNet implemen-
tations.

The specificity of XCeption is that the Depthwise Convolution is not followed
by a Pointwise Convolution, but the order is reversed, as in this example :

Fig. 22: XCeption
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XCeption model allows a shorter training time on GPUs, more image pro-
cessing per second in real-time prediction, and prevents overfitting. Thanks to
the XCeption architecture, we limit the number of parameters to 3,969,639 even
though the model is really deep. The simple model presented in the previous
section has 4,046,215 parameters.

4.6 Illustration

In the context of multimodal sentiment analysis, a key component is to be
able to understand emotions from a video input, not only from pictures. The
methodology to deploy our trained model on a webcam stream is the following :

• analyze the video image by image
• apply a grayscale filter to work with fewer inputs
• identify the face and zoom on it
• manage multiple faces
• reduce pixel density to same pixel density than the train set
• transform the input image to a model readable input
• predict the emotion of the input

An illustration of the process is proposed in Figure 11. The image processing
is done with OpenCV on Python. The face detection is done with a Cascade
Classifier. Cascade classifiers is based on the concatenation of several classifiers,
using and uses all the information from the output from the previous classifier as
additional information for the next classifier in the cascade. Cascade Classifiers
are typically applied to regions of interest of an image. The classifier will return
0 or 1 depending on whether the region is likely to show the object tested.
The classifiers typically are Adaboost, Real Adaboost, Gentle Adaboost and
Logitboost. OpenCV offers pre-trained cascade models for face detection.

The webcam facial emotion algorithm presented above can be illustrated with
a quick example. The classification seems to work well in practice. There are
however still many sources of improvements.
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Fig. 23: Live facial emotion recognition
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Our model works well and the accuracy reaches 64%. We can illustrate the
accuracy of the algorithm with a concrete example.

Additional work has also been made to allow for multi-faces real time emotion
recognition.

Fig. 24: Multi-Faces emotion recognition
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5 Ensemble model

5.1 Introduction

Multimodal emotions recognition requires the fusion of information from
different modalities. Awareness of the state of the art in unimodal emotions
recognition facilitate the construction of an appropriate multimodal framework.
Then, the fusion of multimodal data can provide surplus information with an
increase in accuracy of the ensemble model. There are mainly two levels or
types of fusion studied by researchers: feature-level fusion or early fusion, and
decision-level fusion or late fusion.

5.2 Feature-level fusion model

In feature-level fusion or early fusion, the multiple features extracted from
different modalities (ie. text, video, and audio) are concatenated into a large
feature vector and a single model is trained. The interest of such a technique
is that the correlation between the multimodal features at an early stage can
potentially lead to more accurate results. The shortfall of this method is time
synchronization, as the formats of the features extracted from diverse modalities
can significantly differ. Precisely, this type of fusion cannot easily represent the
loose timing synchronicity between audio and visual features.

Fig. 25: Early Fusion
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5.3 Decision-level fusion model

In decision-level fusion (or late fusion), the features of each modality are
processed independently to build different models, then the results are merged as
a vector in order to obtain the final output. The advantage of the method is that
each model can use its best suitable classifier, and the fusion of the results is easy
to achieve as the merged formats are similar. On the other hand, since multimodal
expressions are often displayed in a complementary and redundant manner, the
assumption of conditional independance between modalities can result in a loss
of information. Moreover, the ensemble model becomes less readable and more
time consuming. Among the existing methods allowing the merge of classifiers,
we can mention different techniques as weight sum approach, weighted product
rule, or Kalman filter.

Fig. 26: Late Fusion

A third kind of method called model-level fusion, has been developed to
mitigate the issues of feature and decision fusion by taking into account the
correlation between data observed through different modalities, while relaxing
the requirement of synchronization. In that way, the method allows capturing
correlations and structures embedded in the continuous output of the classifiers
from different sets of cues.
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6 Webpage

For the implementation of our models, we chose to create an open source web
application. The purpose of this platform is to make available to all our emotion
recognition models in an intuitive and easily accessible way. It allows users to
obtain in real time a personalized assessment of their emotions or personality
traits based on the analysis of a video, audio or text extract sent directly
via the platform. As our research work was made for the French employment
agency Pole Emploi, this tool is initially dedicated to job seekers looking to
practice their interview skills : the candidates can train themselves as much
as they want to answer the questions, and each time obtain a summary of the
emotions/personality traits perceived by our algorithms as well as a comparison
with the other candidates. The application has been conceived with the Python
micro web framework Flask, which is based on Werkzeug and Jinja2.

Fig. 27: Web application homepage

A page is dedicated to each communication channel (audio, video, text) and
allows the user to be evaluated. A typical interview question is asked on each
page, for instance : ”Tell us about the last time you showed leadership”. The
audio/video extract (recorded via computer microphones/webcam) or text block
can be retrieved once saved, and processed by our algorithms (in the case of the
text channel the user can also upload a .pdf document that will be parsed by our
tool).
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Fig. 28: Video interview page

Fig. 29: Audio interview page
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Fig. 30: Text interview page

Once the user has recorded or typed his answer, he is redirected to a summary
page. In the case of the video interview for example, this assessment allows him
not only to know his ”score” in each of the emotions identified by our model,
but also the average score of the other candidates: in this way he can re-position
himself, and adjust his attitude at will. We believe that including a kind of
benchmark in the analysis helps the user becoming aware of his or her position
in relation to the average candidate.

The text and video/audio summaries are slightly different : for the text
interview summary, not only we chose to display the percentage score of identified
personality traits for both the user and the other candidates, but also the most
frequently used word in the answer. For the video and audio interview summaries,
we displayed the perceived emotions scores of the user and the other candidates.
Following are the summary pages for both the text and video interviews.
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Fig. 31: Text interview summary and comparison with other candidates
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Fig. 32: Video interview summary and comparison with other candidates



50

Fig. 33: Video interview visualization of probabilities over time

7 Conclusion

To conclude, it is possible to construct rather accurate classifiers for both
personality traits and emotions recognition for different input types considered
separately, each modality requiring its own set of features and hyper-parameters.
The following steps for our project will be to design an ensemble model capable of
combining the insights gained from both personality traits detection and emotions
recognition in order to provide a broader assessment of a user’s interview. Our
final model would include a type of coherence measure expressing the similarity
between a specific user’s emotional profile and the average characteristics of
people in the same psychological category according to the Big Five model. This
would typically imply unsupervised clustering techniques.
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6. T.Vogt, E.André and J.Wagner. Automatic Recognition of Emotions from Speech:
A Review of the Literature and Recommendations for Practical Realisation. Affect
and Emotion in Human-Computer Interaction, 2008.
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