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I. Criminal Networks and 
CSI
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I. Criminal Networks and CSI

• In real-time investigation condition, as a new audio file is collected, we 
must assess the identity of the characters (say 2 to keep it simple) 

• If we miss-classify one speaker or another, we add a wrong edge in the 
graph, which can lead investigators on a wrong track
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I. Criminal Networks and CSI

• But since we have weighted graphs reflecting previous interactions, we 
know which link is more likely to be correct
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Hypothesis: Criminal networks convey information that could allow us to improve 
speaker identification in criminal investigations.
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I. Criminal Networks and CSI

e.g. If A and B talk often, and A and B are 
potential candidates for the identity of potential 
characters in a conversation, we can re-rank the 
pairs of characters based on the frequency of 
previous interactions.
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I. Criminal Networks and CSI

We use Criminal Scene Investigation (CSI) TV-series data: 

• transcripts are provided by the University of Edinburgh (https://
github.com/EdinburghNLP/csi-corpus) 

• videos and audio of episodes were extracted from the DVDs we bought 

We make the assumption that the topology of the episodes studied in CSI is 
close enough to criminal investigations.

https://github.com/EdinburghNLP/csi-corpus
https://github.com/EdinburghNLP/csi-corpus
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II. 
Speaker identification in 
criminal investigations
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Existing works: « Leveraging side information for speaker identification with the Enron 
conversational telephone speech collection. », Ning Gao, Gregory Sell, Douglas W. Oard, Mark Dredze 

II. Speaker identification in criminal investigations

Steps: 
• Speaker diarization using i-vector segments 
• Speaker identification using i-vector baseline  
• Re-rank the potential speakers in the conversation using past information
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Existing works: « Leveraging side information for speaker identification with the Enron 
conversational telephone speech collection. », Ning Gao, Gregory Sell, Douglas W. Oard, Mark Dredze 

II. Speaker identification in criminal investigations



Results: 

• DCF metric is deteriorated 

• Classification error metric is improved 

• R, the harmonic mean of the rank is improved
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II. Speaker identification in criminal investigations



Limits of the approach: 
• Works only if 2 characters are involved in the conversation 
• Requires an external source of data (emails) to influence the scores of phone 

calls
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II. Speaker identification in criminal investigations
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III. 
Evaluation metrics
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III. Evaluation metrics

Speaker accuracy is a natural metric. However, in a conversation of 5 people, 
if we mis-identify one character, we add a wrong edge to the network:



17

III. Evaluation metrics

We introduced the notion of « conversation accuracy », the percentage of 
conversations for which we correctly identified all characters.

accC =
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∑
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IV. 
Speaker Identification 

baseline



• Used a pre-trained speaker identification system prepared for the NIST Speaker Recognition 
Evaluation (SRE19) dataset. (Idiap’s submission to the NIST SRE 2019 Speaker Recognition 
Evaluation) 

• Time Delay Neural Network (TDNN) X-vector systems with a PLDA back-end 
• Downsampled speech data to 8kHz (with an application of band-pass filtering between 20 
and 3700Hz) 

• 23-dimensional MFCCs were extracted on 25ms speech windows, with a frame-shift of 10ms   
• To remove non-speech frames, energy-based Voice Activity Detection (VAD) was applied
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IV. Speaker identification baseline

Details of the system used:
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V. 
Re-ranking algorithm
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V. Re-ranking algorithm

In CSI, many conversations involve more than 2 characters. And we only have 1 
source of data. We need to bring solutions to the limits of previous approach.

smc =
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speakers in the 
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Acoustic score of 
speaker k
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of speaker k

All 2*2 
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conversations between 1 

and 2 divided by total 
number of conversations
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V. Re-ranking algorithm

We then select the combination that leads to the maximum score:

s*mc = arg maxm∈Mc
smc
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VI. 
Results
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VI. Results

Results were extracted on 4 episodes 
on CSI.  

We reached a relative improvement of 
4.7% in terms of conversation 
accuracy and 1.5% in speaker 
accuracy.  

For conversation and speaker 
accuracy, we obtained absolute 
improvements of 3.7% and 1.3%, 
respectively.



25

VI. Results

Performance is significantly improved when sub-groups are made at the 
beginning of the episode. However, when there is less structure in the 
investigation, the overall performance is less impacted.
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VII. 
Future works
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VII. Future works

Re-ranking based on the number of edges between the potential characters 
is only one approach. We can explore several other approaches, including 
the similarity between node embeddings (Node2Vec).
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VII. Future works
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VII. Future works

We learn embeddings using Node2Vec, an implementation of Word2Vec on 
random walks in graphs.
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VII. Future works

We must learn the embeddings 
on a relevant weighted graph. If 
the structure of the episode 
changes a lot after the 
embeddings we learned, the 
embeddings-based re-ranking 
won’t improve the performance. 
But if the structure is relevant, 
we improve the performance by 
a significant factor.
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