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Abstract

Criminal investigations rely on the collection of conversational
data. The identity of speakers must be assessed in order to build
or improve the accuracy of an existing criminal network. Inves-
tigators use social network analysis tools to identify the most
central character and the different communities within the net-
work. We introduce Crime Scene Investigation (CSI) television
show as a potential candidate for criminal conversational data.
We also introduce the metric of conversation accuracy in the
context of criminal investigations. In this paper, a speaker iden-
tification baseline is improved by re-ranking candidate speakers
based on the frequency of previous interactions between speak-
ers and the topology of the criminal network. The proposed
method can be applied to conversations involving two or more
speakers. We show that our approach outperforms the base-
line speaker accuracy by 1.3% absolute (1.5% relative), and the
conversation accuracy by 3.7% absolute (4.7% relative) on CSI
data.

Index Terms: speaker identification, network analysis, crimi-
nal networks

1. Introduction

Conversational data defines data created by interactions be-
tween a set of characters, through text messages, telephone,
or video calls for example. In criminal investigations, Law
Enforcement Agencies (LEAs) collect criminal conversational
data and build criminal networks to assess the links between
suspects. Hereby, we introduce ROXANNE [1], a European
Union’s Horizon 2020 research project leveraging real-time
network, text, and speaker analytics for combating organized
crime.

In this paper, we test the assumption that past interactions
and the topology of criminal networks can be used to improve
speaker identification systems on conversational data, hence fa-
voring strong existing relationships between speakers.

We propose an extension to existing works by Gao et al. [2]
by computing, for a conversation, the speaker identification
scores of each speaker, and re-ranking the potential speakers
based on how frequently they talked to each other over the past
and the topology of the network. The main difference of our ap-
proach is to offer an extension for more than two speakers per
conversation, in the context of criminal investigations, without
having to rely on any external source of data.

Section 2 presents the Crime Scene Investigation (CSI) data
as a potential candidate for criminal conversational data. The
evaluation metrics used are described in Section 3. The results
of a baseline speaker identification will be presented in Section
4 Section 5 describe our re-ranking method and experimental
results, while Section 6 discusses obtained results, the dataset,

and the metrics used, as well as the future direction of network-
based improvement of speaker identification.

2. Criminal Investigation Data

Criminal networks are made of nodes, representing the identity
of characters, and edges, which reflect links between characters,
all together describing the topology of the network. When au-
dio files are collected, the identity of the characters involved is
assessed by a speaker identification system, given the enrolled
models from the speakers. Based on the detected identities, a
link between two characters in the network is added. Edges can
then be weighted to reflect the number of previous interactions
between two given characters. Edges with larger weights reflect
a high frequency of interactions in the past, which can be crucial
information in investigations.

Real-condition criminal conversational data are hard to col-
lect due to the variety of modalities and channels required.
Criminal data also require timestamps of all the interactions,
names, and roles of each character. The topology of criminal
networks is also specific, and this type of data is by nature pri-
vate. For these reasons, criminal conversational data are specific
and to our knowledge, apart from the Enron e-mail database [3]
augmented with the Enron phone call database [4], as described
by Gao et al. [2], no such real-condition database exists. How-
ever, most fraudulent conversations were removed from Enron
database, and the topology of the network we can build does
not entirely reflect the fraudulent activities of Enron. Although
no ideal candidate database has been identified, we propose to
use CSI television show as a potential candidate for criminal
investigation data.

CSl is a popular criminal investigation television series in
the United-States. Each episode of the series includes a video
of around 40 minutes, an audio file, and a transcript. The audio
and video are extracted from the DVD of the show. The tran-
scripts were published by the natural language processing group
of the University of Edinburgh for previous work on LSTM-
based killer identification in CSI episodes [5]. The transcripts
also describe the role of each speaker (suspect, killer, or other)
and can be downloaded publicly on GitHub [6]. Each episode
involves a team of investigators, journalists, victims, the family
of the victims, suspects, and killers.

We collected transcripts of 39 episodes and video/audio of
4 episodes. Each episode involves on average more than 30
speakers. Utterances last on average 3 to 4 seconds. There are
around 45 to 50 distinct scenes/conversations per episode. Fig-
ure 1 presents the distribution of the speech duration per speaker
in season 1 episode 7.

We suppose that the structure of the networks that we can
extract from this information is relevant for criminal investiga-
tion. One major limitation is that the episodes of CSI focus on
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Figure 1: Distribution of aggregated speech time, in seconds,
per speaker in season 1 episode 7.
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Figure 2: Network representation of Season 1 Episode 7.

the investigators as well as suspects, whereas a real investiga-
tion would only collect data on suspects. The episodes sequen-
tially display a murder, the body/bodies are then discovered,
police start the investigation, gather evidence, interrogate sus-
pects, and identify the killer. We do not have information on
the exact time at which each scene took place. Therefore, we
consider the data as sequential by default and do not conduct
any analysis on the time between conversations.

We build the ”ground-truth” network using the transcripts
provided, as illustrated in Figure 2. In the interactive tool de-
veloped, the thickness of the edges reflects the number of inter-
actions between the speakers, and the tool-tip displayed on the
node shows the name of the character. Note that the network we
built is only a sub-network from the whole Season 1 Episode
7, focusing on the 14 characters with more than 20 seconds of
speech, as illustrated in Figure 1. Speakers without sufficient
data were mostly journalists or local police officers that did not
have a central role in the conversations.

3. Evaluation metrics

Speaker accuracy is a natural candidate metric in criminal inves-
tigations. Another metric which is relevant for LEAs is the per-
centage of conversations for which we could identify all speak-
ers, which we define as the conversation accuracy. In a criminal
case with C' conversations, each of the conversations involves
the list of speakers s.. Using our speaker identification system,
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Figure 3: Effect of adding a wrong edge to an existing network.

we predict the list of speakers as being s,.. The conversation
accuracy then becomes:

c
1
accc = 5;6(5176,36), €))

where (Spc, Sc¢) is an indicator function equal to 1 if spc is
equal to sc.

The motivation behind the conversation accuracy is that
adding a wrong edge to the network of known connections
could lead investigators on the wrong track. Let us illustrate
the process of misclassifying one of the speakers in a conver-
sation in Figure 3, based on an existing network. The existing
links between speakers are presented in black. In a new con-
versation, we suppose that speakers 1,2,3,4 and 5 were talking.
On the left part of Figure 3, we added the correct edges in blue.
On the contrary, if we misclassify speaker 5 as being speaker 6,
three wrong edges are added at once, and the topology of the
network is completely modified, which motivates the use of this
metric in criminal investigations.

To compute it, we split the raw audio file of each episode
into a sequence of conversations. These sequences of conversa-
tions were manually annotated for each of the 4 episodes, but
could also be inferred automatically using speaker diarization
techniques [7]. The identity of each speaker in a conversation
is then assessed, and after processing all the conversations, the
conversation accuracy is computed.

4. Speaker identification baseline

Due to the relatively low volume of data available, we used a
pre-trained speaker identification system prepared for the NIST
Speaker Recognition Evaluation (SRE19) dataset [8]. The pre-
trained system is described in Idiap’s submission to the NIST
SRE 2019 Speaker Recognition Evaluation [9]. The submission
relies on Time Delay Neural Network (TDNN) [10] X-vector
systems [11, 12] with a Probabilistic Linear Discriminant Anal-
ysis (PLDA) [13] back-end.

We first downsampled speech data to 8 kHz (with an appli-
cation of band-pass filtering between 20 and 3700 Hz). Then,
23-dimensional mel frequency cepstral coefficients (MFCCs)
were extracted on 25 ms speech windows, with a frame-shift
of 10 ms. To remove non-speech frames, energy-based Voice
Activity Detection (VAD) was applied.

We trained the X-vector system on Voxceleb dataset [14]
and on the augmented versions of Switchboard dataset [15] and
SRE 2004 to 2010 with additive noise (MUSAN dataset [16])
and reverberation (RIR dataset [17]). The PLDA classifiers
were trained on augmented versions of SRE.



We only selected speakers from CSI for which we were able
to collect at least 20 seconds of audio samples. We then keep
20 seconds as enrolment and everything in test. Depending on
the episode, we have 13 to 15 speakers among a total of 28 to
33 speakers. The X-vector/PLDA baseline heads an average
speaker accuracy of 89.9% on the 4 episodes and an average
conversation accuracy of 78.1%.

5. Re-ranking algorithm

Gao and al. [2] have shown in previous works on Enron email
and phone call databases that we can re-rank speaker pairs us-
ing network information. The knowledge present in the email
database was used to assess how often speakers talked to each
other. This information was then used to re-compute the score
of a pair of speakers, improving the score of the pair if speak-
ers talked to each other frequently in the past. This work has
shown an improvement in classification error and on the har-
monic mean of the rank of the known speaker. However, these
conclusions are linked to the topology of the network inherent
to Enron phone call and email collection, and the approach is fo-
cused on conversations between two speakers only. Moreover,
this approach requires an external source of data, such as emails
in the case of Enron. In CSI dataset, several conversations in-
volve more than 2 characters, and we don’t have any external
data source.

5.1. Method description

We introduce s,,. as being a joint score of all speakers in a
conversation ¢, considering the combination of speakers m. Our
aim is to score all combinations of speakers (M. in total) in
a conversation, and choose the combination which maximizes
the score. In the given conversation, there are N,,. different
speakers. For each speaker k, we obtain the acoustic score s
from the X-vector baseline. We define the relative degree C},
as the number of interactions of speaker k divided by the total
number of interactions. The score of the combination m for
conversation ¢ can be written as:
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where S,, denotes all the permutations of speakers, two-by-
two, denoted ki and k2, within the list of candidates m, ey, k.,
is the number of times speakers k1 and k2 talked to each other
over the past, and E is the total number of conversations in the
graph at the moment of the conversation c. The factor A denotes
a weighting factor, which we set to 1 by default, but has been
adjusted to 0.2 in some of our experiments.

The logic behind this scoring approach is to weight the
acoustic scores of each speaker by their degree centrality to fa-
vor speakers who have talked much over the past. Then, we
multiply the resulting score by the frequency of the conversa-
tions between all the permutations of the speakers. For exam-
ple, if characters A, B, and C talked frequently over the past,
then the two-by-two permutations between A and B, B and C,
A and C will lead to a large increase of the score of this combi-
nation of candidates. For a given conversation c, we will select
the optimal combination of speakers m such that:

"
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The process of our method is presented in Figure 4. We can
notice that for the first recording in the conversation, Speaker 1
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Speaker_1 14.134
Speaker_2 11.032
Speaker_3 -11.34
Speaker_4 0.123
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Figure 4: Re-ranking process.

and Speaker 2 have acoustic scores from the speaker identifica-
tion system which are relatively high, and close. For the sec-
ond recording, Speaker 4 is by far the candidate with the high-
est score. However, from the topology of the network, we see
that Speakers 2 and 4 have been talking a lot over the past and
Speaker 1 and 4 never spoke together. Through the re-ranking
process, we multiply the score of Speaker 2 by its relative de-
gree of centrality and the score of Speaker 4 by its degree of
centrality. We then average the two scores and multiply the re-
sult by the relative number of interactions between Speaker 2
and 4. The score we obtain for the pair of Speaker 2 and 4
is higher than the pair of Speaker 1 and 4. Therefore, the re-
ranking favors speakers with a high frequency of interactions in
the past.

The novelty of our approach compared to [2] is to focus on
a single data source, and not external ones. The re-rankings that
we operate have impacts on the ways we built the network. We
then estimate the number of interactions and the centrality of
characters on this network, which will itself influence the next
re-ranking.

Since some of the computations imply evaluating all com-
binations between all speakers involved in a conversation, it can
create a large number of combinations to compute. In order to
limit the number of combinations tested, we apply a threshold
on the scores under which we decide not to consider a speaker
as a potential candidate for a given recording as part of a con-
versation.

5.2. Experimental results

We compute the scores on 4 episodes of CSI, resulting in 3
hours of conversations. For each episode, instead of re-using
the same network, we created a new one. The X-vector base-
line correctly identified all speakers in 78.1% of the conversa-
tions on average. Using the re-ranking approach, conversation
accuracy reaches 81.8%. Speaker accuracy has also been im-
proved from 89.9% to 91.25%. A summary of the results is pre-
sented in Table 1. The baseline is represented by the X-vector
speaker identification system and the “network” is the proposed
approach.



Table 1: Re-ranking performance summary on CSI episodes.

Approach Speaker acc.  Conv. acc.
SO1EOQ7 baseline  91.6% 84.4%
SO1EO7 network ~ 92.7% 88.8%
SO1EO08 baseline  91.9% 80.6%
SO1EO8 network  95.3% 88.8%
S02EO01 baseline  88.0% 71.4%
SO02EO01 network  88.0% 73.5%
S02E04 baseline  88.1% 76.1%
S02E04 network  89.0% 76.1%
Average baseline  89.9% 78.1%
Average network  91.25% 81.8%

We reached a relative improvement of 4.7% in terms of con-
versation accuracy and 1.5% in speaker accuracy. For conversa-
tion and speaker accuracy, we obtained absolute improvements
of 3.7% and 1.3%, respectively. In CSI, the way teams work
on investigations is usually structured. The members of the in-
vestigation police are split into groups, and each group works
on specific tasks. Most conversations hence take place within
rather small groups. In this case, the network topology reflects
the structure of groups working on a case, and our approach im-
proves the speaker accuracy and the conversation accuracy by
a significant factor. In other cases, the whole team works on
the investigation without any distinct group being made, e.g. in
S02EOQ1. In that case, speaker accuracy is not improved, and we
observe a slight improvement in conversation accuracy. Note
that in this episode, the baseline X-vector approach performs
quite poorly since the episode takes place in a casino, with a lot
of background noises.

6. Discussions

In this paper, we first present the CSI dataset as a potential can-
didate for criminal investigation data. Although the main char-
acters of the episodes are the members of the investigation po-
lice, CSI remains a good potential candidate for criminal con-
versational data. The network is time-varying, meaning that
characters are discovered gradually and new interactions take
place sequentially. The topology of the network reflects the cre-
ation of various groups (investigation, suspects, ...). The iden-
tification of the central speakers is also coherent since the main
investigators also appear as the most central characters in our
analysis.

However, CSI dataset has several limitations. The scenes
are acted, and the audio quality, apart from some background
music, is better than telephone data we would collect in real
criminal investigations. The number of speakers we consider,
due to the volume of data we can collect on each speaker, re-
mains pretty low compared to real investigations. We do not
have timestamps of each conversation, although having this
kind of information would allow us to make recent conversa-
tions account more in the re-ranking. Finally, depending on
the structure of the episode, i.e. whether investigation groups
were built at the beginning of the investigation or not, the per-
formance of our approach is impacted.

The proposed re-ranking approach explores the different
permutations of speakers for each conversation. There are three
novel elements in our approach compared to [2]. We do not rely

on an external source of data to estimate the number of links be-
tween speakers, but exclusively on previous interactions in the
same data source. Therefore, re-ranking decisions made pre-
viously impact how we estimate the number of links between
2 candidate speakers in a conversation later on. We then offer
an extension by applying our approach to more than 2 speakers
in a conversation, thus creating large combinatorial factors con-
trolled by thresholds. Finally, we apply our method in the con-
text of a criminal investigation and show interesting improve-
ments in speaker and conversation accuracy.

We have shown an interesting marginal gain in the context
of criminal investigations, on CSI data. We conducted experi-
ments in the context of the ROXANNE project and focused on
criminal conversational data. Conversational data is, however,
broader than criminal investigations, and we do expect that one
can improve speaker identification systems in other contexts, on
larger volumes of data and wider networks.

Network attributes, other than relative degree centrality and
number of edges between two characters, could also be lever-
aged. We could indeed include notions from community detec-
tion or hierarchical embedding in the re-ranking algorithm.

7. Conclusions

We introduced CSI dataset as a potential candidate from crim-
inal investigation data. We have introduced the metric of con-
versation accuracy in the context of a criminal investigation. We
have shown that our re-ranking method based on previous inter-
actions can improve speaker identification on CSI dataset by a
relative 1.5%, and conversation accuracy by 4.7%.

We discussed the limits of both CSI dataset and our re-
ranking method, and offer some future directions to take by in-
cluding social network analysis tools in speaker identification.
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