
Expectation Maximization for Gaussian
Mixture Models and Hidden Markov Models

Juan Pablo Zuluaga, Mael Fabien - 07 May 2020

Applications to speech and other examples
EE605 Statistical Sequence Processing

1

Juan Pablo Zuluaga, Mael Fabien - 07 May 2020
2

https://github.com/
maelfabien/EM_GMM_HMM

About this work

http://127.0.0.1:8050/

pip install -r requirements.txt
python app.py

https://github.com/maelfabien/EM_GMM_HMM
https://github.com/maelfabien/EM_GMM_HMM
http://127.0.0.1:8050/

Overview

1. Modeling distributions

2. Reminder on GMMs

3. Motivation for EM

4. EM for GMMs

5. Hard/Viterbi EM

6. Limits of EM

7. Applications of EM for GMM

3

Part I: EM and GMMs

Overview

1. Introduction to HMMs

2. HMM training with forward-backward algorithm (Baum Welch)

3. Viterbi Training

4. HMM-GMM training

5. HMM applications

4

Part II: EM and HMMs

Theory and examples

5

Part I: EM and GMMs

6

I.
Modeling distributions

• Why do we need GMMs?

7

The data obviously belongs to
2 different clusters, meaning
that 2 different sources
generate these data. If we fit a
single Gaussian, we might end
up with a mean not reflecting
any of the clusters.

Mean

I. Modeling distributions with k-Means and GMMs

• Why are GMMs a popular choice for modeling distributions? And how does it
compare to k-Means? k-Means can be seen as a special case of GMMs.

I. Modeling distributions with k-Means and GMMs

8

k-Means GMM

Clusters are defined by their means Clusters are defined by their means and
their variance, modeled as Gaussians

Limitations if clusters are overlapping Works if clusters are overlapping

Uses Euclidean distance to the mean Uses the probability of X belonging to a
cluster (generative)

• Why are GMMs a popular choice for modeling distributions? And how does it
compare to k-Means?

9

I. Modeling distributions with k-Means and GMMs

10

Moreover, GMMs, since generative models, have some useful properties, such as:
• Deriving the probability that observations come from a cluster
• Evaluating the similarity between training and testing sets

The k-Means algorithm is in fact a special case of GMM with (hard) EM, where
each component is generated by , being the identity matrix𝒩(μ, I) I

I. Modeling distributions with k-Means and GMMs

11

II.
Reminder on Gaussian

Mixture Models

• A GMM is a weighted sum of M components Gaussian densities. A density of
a Gaussian can be defined as:

II. Reminder on Gaussian Mixture Models

12

P(x ∣ λ) =
M

∑
k=1

wk 𝒩(x ∣ μk, Σk)

𝒩(x ∣ μk, Σk) =
1

(2π)D
2 ∣ Σk ∣

1
2

exp− 1
2 (x−μk)TΣ−1

k (x−μk)

Gaussian density

M

∑
k=1

wk = 1

WeightsM Components

13

II. Reminder on Gaussian Mixture Models

14

II. Reminder on Gaussian Mixture Models

• The parameters of the GMM are therefore :

How do we solve GMM? Start by solving a single gaussian…

15

λ = (wk, μk, Σk), k = 1, 2, 3, . . . , M

L(θ ∣ X) =
N

∏
i=1

P(xi ∣ θ) =
N

∏
i=1

1

(2πσ2)
exp

−(xi − μ)2

2σ2

• We apply a Maximum Likelihood Estimation (MLE) to find the parameters:

θ⋆ = argmaxθ L(θ ∣ X)

θ = (μ, σ)

II. Reminder on Gaussian Mixture Models

• For convenience, we maximize the log-likelihood since:

16

argmaxθ L(θ ∣ X) = argmaxθ log L(θ ∣ X)

d
dμ

logL(θ ∣ X) = 0

• Set the partial derivatives for both parameters to 0:

μMLE =
1
N

N

∑
n=1

xn

d
dσ

logL(θ ∣ X) = 0 σ2
MLE =

1
N

N

∑
n=1

(xn − μ)2

II. Reminder on Gaussian Mixture Models

• To find the MLE of GMM parameters, we need to re-define the likelihood:

17

L(θ ∣ X1, . . . , Xn) =
N

∏
i=1

M

∑
k=1

wk 𝒩(xi; μk; σ2
k)

Component weightsAll componentsAll observations Gaussians

II. Reminder on Gaussian Mixture Models

18

III.
Motivation for

Expectation Maximization

• The log-likelihood becomes:

III. Motivation for EM

19

l(θ) = log L(θ ∣ X1, . . . , Xn) =
N

∑
i=1

log(
M

∑
k=1

wk𝒩(xi, μk, σ2
k))

• We now must solve over the M Gaussian components. If we set the derivative
to 0 to identify the optimal value of the means :μk

N

∑
i=1

1

∑M
k=1 wk𝒩(xi, μk, σk)

wk𝒩(xi, μk, σk)
(xi − μk)

σ2
k

= 0

• We cannot solve analytically for , and therefore we need to find another
approach

20

μk

• What if we knew which Gaussian each data point belongs to? We could solve
analytically for the parameters of each Gaussian !

• We can suppose that latent variables exist, and they describe the
component of the mixture to which each observation belongs

Zi
Xi

III. Motivation for EM

21

• We can suppose that we know
which component each
observation belongs to
() and it will help us
solve each Gaussian. We can
iteratively update the
parameters using EM in the
training cycle.

Xi
Zi = k

III. Motivation for EM

λ1 = (w1, μ1, Σ1) λ2 = (w2, μ2, Σ2)

λ3 = (w3, μ3, Σ3)

λ4 = (w4, μ4, Σ4)

22

IV.
EM for Gaussian Mixture

Models

23

• The main idea behind EM is the following:

• E-step: We estimate the distribution of the hidden variable given the data
 and the current value of the parameters

• M-step: We maximize the joint distribution of the data and the hidden
variable and derive the values of the updated parameters

Z
X θ

λ = (wk, μk, Σk), k = 1, 2, 3, . . . , M

IV. EM for GMMs

24

• EM introduces a latent variable corresponding to the component of the
GMM to which each observation belongs

• is now said to be incomplete data, and the complete data is:

• The joint density is:

• The likelihood is now said to be incomplete

• The complete likelihood now becomes :

Z

X (X, Z)

P(X, Z ∣ θ) = P(Z ∣ X, θ)P(X ∣ θ)

L(θ ∣ X)

L(θ ∣ X, Z) = P(X, Z ∣ θ)

IV. EM for GMMs

25

• Let us first initialize the parameters of our Gaussians randomly:

• We suppose that we have observations belonging to different components

θ = (μ, σ, w)

N M

IV. EM for GMMs

26

• Let us now define as the probability that a given observation belongs to component

• These « pseudo-posteriors » are defined as:

γzi=k k

γzi=k = P(Zi = k ∣ Xi) =
P(Xi ∣ Zi = k)P(Zi = k)

P(Xi)
=

wk𝒩(xi, μk, σk)
∑c wc𝒩(xi, μc, σc)

IV. EM for GMMs

Probability of under
component k

xi

Sum of probabilities on
all components

γzi

27

• In the « Estimation » step (E-step), we estimate the value of the auxiliary function:

Q(θ, θ(t)) = E[log P(Z ∣ θ) ∣ X, θ(t)]

1. The E-Step

The auxiliary function can be proven to be a lower-bound of the gain of likelihood
 when updating the parameters (see appendix 1). In other words, if we

increase the auxiliary function, we are sure to increase the likelihood.
L(θ) − L(θ(t))

28

• Why don't we do a gradient descent on the Likelihood function?

• Because it’s analytically un-feasible !

• This is why we need an auxiliary function, a lower-bound of the likelihood gain,
which is the only method we know to compute the new value of the parameters

1. The E-Step

29

• Further expanding the auxiliary function:

 Q(θ, θ(t)) =
M

∑
k=1

log L(θk ∣ X, Z) P(Zk ∣ X, θ(t)) =
M

∑
k=1

log L(θk ∣ X, Z) γzi=k

1. The E-Step

Likelihood of a
Gaussian with

updated parameters

Distribution of latent
variable from current

parameters
Current parameter value

Updated parameters

30

• In the « Maximum » step (M-step), we maximize the value of Q to find the
optimal parameter value:

 θ(t+1) = argmaxθ Q(θ, θ(t))

2. The M-Step

31

• The update equations of the M-step are defined by setting the derivative of Q to
0 with respect to . By expanding the expression of the auxiliary function,
we get the following expression which can be solved analytically:

w, μ, σ

Q(θ, θ(t+1)) =
M

∑
k=1

N

∑
i=1

log γkP(Zk ∣ Xi, θ(t)) +
M

∑
k=1

N

∑
i=1

log P(xi ∣ θk)P(Zk ∣ Xi, θ(t))

d
dμk

= 0

2. The M-Step

…

32

• The updated parameters become:

 where ̂μk =
∑N

i=1 XiP(Zi = k ∣ Xi, θ(t))

∑N
i=1 P(Zi = k) ∣ Xi, θ(t))

=
1
Nk

N

∑
i=1

γZi=kXi Nk =
N

∑
i=1

γZi=k

Weighted average of the data with a weight showing how likely the point
belongs to the cluster

̂σ2
k =

1
Nk

N

∑
i=1

γZi=k(Xi − μk)2

ŵk =
Nk

N

2. The M-Step

33

̂σ2
k =

1
Nk

N

∑
i=1

γZi=k(Xi − μk)2

ŵk =
Nk

N

2. The M-Step

̂μk =
1
Nk

N

∑
i=1

γZi=kXi ̂μ1

The mean update can be seen as a weighted average of the
observations by the probability of belonging to the component

34

• Using the new values of the parameters , inject it in the E-step again:

θ = (̂μ, ̂σ, ŵ)

Q(θ, θ(t+1)) =
M

∑
k=1

log L(θk ∣ X, Z) P(Zk ∣ X, θ(t+1))

3. An iterative process

γk =
1
N

N

∑
i=1

P(Zi = k ∣ X, θ(t+1))ŵ, ̂μ, ̂σ

35

3. An iterative process

γk =
1
N

N

∑
i=1

P(Zi = k ∣ X, θ(t+1))ŵ, ̂μ, ̂σ

γzi γzi

36

• And estimate the value of the optimal parameters again in the M-Step:

 θ(t+2) = argmaxθ Q(θ, θ(t+1))

3. An iterative process

37

• The EM cycle can be illustrated as:

Estimation

Maximization

Initial Parameters Final Parameters

θ

Q(θ, θ(t)) θ(t+1)

θ⋆

3. An iterative process

Fix , update θ γZ

Fix , max γZ θ

38

3. An iterative process

39

• EM is an iterative approach that is guaranteed to increase the likelihood over
the number of iterations: log p(X ∣ θ) ≥ log p(X ∣ θ(t))

3. An iterative process

40

V.
Hard / Viterbi EM

41

• So far, what we have seen is called the Soft EM. In Hard EM or Viterbi Training,
we make hard decisions for the Z’s:

• In this case, we do not consider a likelihood weighted over all possible Z with
their probabilities, but we simply select the most probable Z and move forward.

maxθ,ZP(X, Z, θ)

γzi=1

Most likely

V. Hard / Viterbi EM

42

• Hard EM is easier to implement

• But it does not take into account multiple possibilities for Z, which is a problem
if our knowledge of Z is limited

• k-Means is actually a special case of Hard EM

V. Hard / Viterbi EM

43

• Let us compare the Single Gaussian, EM-GMM and Hard EM-GMM:

Summary of Mean Updates

μ =
1
N

N

∑
i=1

γ1xi

Single Gaussian EM-GMM Hard EM-GMM

Probability of 1 to belong to
the only cluster

μk =
1
Nk

N

∑
i=1

γZi=kXi

Probability to belong to
cluster k

μk =
1
Nk

N

∑
i=1

γZi=kXi

1 if maximum over all k, 0
otherwise

44

VI.
Limits of EM

45

• EM is « initialization-dependent », and converges to local optimum

• EM can be initialized with k-Means parameters:

• The mean of each cluster identified by k-Means gives

• We can compute the within-cluster covariances to identify

• We can compute the fraction of data attributed to each cluster to identify

• Highly correlated features might prevent the EM from converging

μk

σk

wk

VI. Limits of EM

46

• Since the computation of Jensen’s inequality supposes convex functions, EM
does not work for all underlying distributions.

• It works for Gaussians, it also works for multinomial distributions, but it cannot
be generalized to any distribution

VI. Limits of EM

47

• Another question is : How to select the right number of components? The same
questions arises in k-Means.

• We focus on two criteria:

• The Aikake Information Criterion (AIC):

• The Bayesian Information Criterion (BIC):

• Where L is the likelihood of the model, N is the total number of data points, p
the total number of estimated parameters. BIC tends to penalize more for
model complexity than AIC.

• But it typically requires large computation power

AIC = 2p − 2 ln(L)

BIC = − 2 ln(L) + p ln(N)

VI. Limits of EM

48

VI. Limits of EM

49

VII.
Applications of EM for

GMM

50

• GMMs are widely used in speech, for example in gender detection, where one
GMM for each gender can be fitted on MFCCs, and we attribute the sample to
the GMM with the highest likelihood

1. GMMs in Speech

Speech MFCC Gender

Max
likelihood

GMM Male

GMM Female

51

1. GMMs in Speech

52

• The k-Means, once applied on images or other signals, are called Vector
Quantization (VQ) and can be used as compression method for images for
example, which prevents from storing the value of each pixel, but simply the
clusters and the values identified by EM. To be more specific, k-Means is one of
the methods that can be used to perform VQ.

2. k-Means for Vector Quantization

53

2. k-Means for Vector Quantization

54

• GMMs are also used for background subtraction in computer vision for
example, where the background is a given cluster, and the objects to keep are
another cluster.

3. GMMs for Background Substraction

55

3. GMMs for Background Substraction

56

• GMMs can be used in unsupervised learning tasks. This is for example the case
with health data. We performed a clustering using GMMs on breast cancer data,
and displayed the contours of the GMM components. We allow the user to
select the number of the components in the GMM.

4. GMMs for clustering

57

4. GMMs for clustering

Break / Questions?

58

Theory and examples

59

Part II: EM and HMMs

60

I.
Introduction to HMMs

61

• Hidden Markov Models are statistical models for which we collect observations
(discrete or continuous) and assume a set of underlying discrete states. The
states are said to be hidden because they are a non-observable stochastic
process.

1. Reminder on Hidden Markov Models

62

• Let us consider the continuous case of HMMs. The model generates an
observation according to a probability distribution (e.g. Gaussian) of the
specific state it is in. We suppose that is independent of all other states.

xt
xt

1. Reminder on Hidden Markov Models

Discrete States

Observations

qt−1 qt qt+1

xt−1 xt xt+1

63

• Notation:
• We have possible states
• We have observations

N
T

1. Reminder on Hidden Markov Models

64

• HMMs are parametrized as:

2. Hidden Markov Models parameters

ajk = P(qt+1 = j ∣ qt = k)

bj(x) = P(x ∣ q = j)

λ = {ajk, bj(x), πj}

State transition probability

Observation PDF

Initial state probabilitiesπj = P(q0 = j)

65

• HMMs are parametrized as:

2. Hidden Markov Models parameters

qt−1 qt qt+1

xt−1 xt xt+1

ajk

bj(x)

ajk = P(qt+1 = j ∣ qt = k)

bj(x) = P(x ∣ q = j)

λ = {ajk, bj(x), πj}

πj = P(q0 = j)

Likelihood

Overall likelihood

HMM model

Observations
X = (x1, . . . , xt, . . . , xT)

Decoding and Alignment

Determine the most probable
hidden state sequence

Viterbi Algorithm

Training

Full EM Viterbi EM

Given

X = (x1, . . . , xt, . . . , xT) HMM model

λ = {{ajk}, {bj(x)}}Parameters
estimation

3. Major problems in HMMs

66

HMM

4. Sequence Likelihood

P(X, Q; λ) = π(q1)P(x1 ∣ q1)
T

∏
t=2

P(qt ∣ qt−1)P(xt ∣ qt)

• The likelihood of a sequence of observations and states is defined as:X Q

Joint likelihood of X and Q Initial occupancy
probability

Total number of
observations

State’s probability
given a previous state

Observation probability
given current state

67

Observation probability
given current state

5. Topology of HMMs

• The topology of HMMs defines the structure of the HMM, and we tend to use special
kinds of HMMs in Speech-related tasks. (see appendix 2 for applications to speech)

Used in Speaker
Identification

Used in Speech
Recognition (3 to 5 states)

Left-to-right model Parallel path left-to-right model Ergodic model

68

69

II.
HMM training with
forward-backward

algorithm (Baum-Welch)

• What is HMM training? In HMM training, we only see a sequence of observations,
and we want to estimate parameters from that sequence of observations. For
example, what generated these observations?

1. What is training?

70

• These data look like they have been generated by different GMMs, in 3 different
states.

GMM 1

GMM 2

GMM 3

1. What is training?

71

• And « training » an HMM means finding these parameters:

{μk, σk, wk}

{μk, σk, wk}

{μk, σk, wk}

Transition matrix

1. What is training?

72

We can summarize the parameters to learn as:
• the transition matrix
• the initial states probability
• the parameters of the GMMs (means, covariances and weights of each GMM)

On our side, we fix:
• The number of states (i.e the number of GMMs)
• The number of components for each GMM

Both of the parameters are hard to tune, but in speech recognition, we usually use 5
states of 1024 components.

A
π
B

1. What is training?

73

For example, here are the parameters identified
for the GMM corresponding to the first state.

1. What is training?

74

For everything that comes next, unless specified otherwise, we will suppose a
discrete HMM.

1. What is training?

75

• The whole training cycle became much harder… We need to estimate the states
in which our system is though the transition matrix

• And we need to estimate the PDF of the underlying distribution (Gaussian, GMM)
through parameter

A

B

76

2. What’s hard about training?

• Just like in EM for GMMs, life would be easier to estimate parameters if we knew
which state generated each data point.

• In that case, estimating the transition probability between i and j would simply be
the number of transitions from i to j divided by the number of transitions from i to
any other state

• And finding the parameters of each GMM can be done using EM

2. What’s hard about training?

77

• More formally, when training HMMs, we try to maximize where is the
observation and the parameters of the HMM M:

P(X ∣ λ) X
λ

λ⋆ = argmaxλP(X ∣ λ)

2. What’s hard about training?

78

Start in state 1

Generate X1 while in state 1

Move to state 2

• One of the problems is that in order to compute , we would need to compute: P(X ∣ λ)
P(X ∣ λ) = ∑

q1,q2,...,qT

πq1
bq1

(x1)aq1q2
bq2

(x2)aq2q3
. . . aqT−1qT

bqT
(xT)

• This computation is almost infeasible (quickly reaches for simple examples)1070

3. The forward algorithm

79

• In most paths we compute, there is only 1 value that changes in the chain. Therefore,
we introduce the forward algorithm, a helper that greatly reduces the computation of
the likelihood of a sequence given parameters by storing intermediate values that lead
to a given state at a given time. The complexity is reduced from to
where T is the number of observations and N is the number of hidden states.

• It is defined as:

O(NT) O(N2T)

αt(j) = P(x1, x2, . . . , xt, qt = j ∣ λ)

3. The forward algorithm

State 1

State 2

x1

x2

x3

aq1q2

bq1=1(X1)
πq1

bq2=2(X2)

X4

X4

Same computation for both paths until , so we just need to store and and not
compute it twice.

aq1,k

aq2q3

bq3=3(X3)

80

• We can compute the probability of an observation sequence in the following manner:

Initialization:

Iteration:

Termination:

α1(i) = πibi(x1)

αt+1(j) = [
N

∑
i=1

αt(i)aij] bj (xt+1)

αE = P(X ∣ λ) =
N

∑
i=1

αT(i)

3. The forward algorithm

αt(j) = P(x1, x2, . . . , xt, qt = j ∣ λ)

= All possible ways to reach j * Proba. to generate observation

Sum over all the possible states that we could have ended up in

81

• The iterative step can be visualized as:

3. The forward algorithm

1

2

N

j

…

a1j

a2j

aNj

αt+1(j) = [
N

∑
i=1

αt(i)aij] bj (Xt+1)

82

States t States t+1

Then, generate observation

• The termination step can be visualized as:

3. The forward algorithm

αE = P(X ∣ λ) =
N

∑
i=1

αT(i)

83

3. The forward algorithm

Note, the forward algorithm requires transition probabilities. Therefore, we must
first initialize the values of the transition matrix and the observation
probabilities at first.

A
B

84

• Similarly, we can present the backward algorithm that will be useful for HMM training:

Initialization:

Iteration:

Termination:

βT(i) = 1

βt(j) = [
N

∑
i=1

βt+1(i)aij] bj (xt+1)

β0 = P(X ∣ λ) =
N

∑
i=1

πibi(x1)β1(i)

4. The backward algorithm

βt(j) = P(x1, x2, . . . , xt ∣ qt = i, λ)

85

• The termination step can be visualized as:

4. The backward algorithm

β0 = P(X ∣ λ) =
N

∑
i=1

πibi(x1)β1(i)

86

• NB: We can easily notice that:

4. The backward algorithm

β0 = αE = P(X ∣ λ)

87

• The forward and the backward algorithms are used to isolate states within the
HMM

• These variable let us estimate transition probabilities between states, and the
distribution of the observations in the states

5. Transition matrix estimation

88

• When training an HMM, say that we want to estimate , the transition matrix first.
In that case :

A

5. Transition matrix estimation

̂aij =
(Number of transitions from state i to j)E

(Number of transitions from state i)E

• We can introduce as being the probability of being in state i at time t and in
state j at time t+1:

ξt(i, j)

ξt(i, j) = P(qt = i, qt+1 = j ∣ X, λ)

89

• What’s convenient is that can be expressed in terms of the forward and
backward variables:

ξt(i, j)

αt(i)

… …
βt+1(j)

t t + 1

ξt(i, j) = P(qt = i, qt+1 = j ∣ X, λ)

Transition
and

generate
value

5. Transition matrix estimation

90

1

2

N

1

2

N

i j

• What’s convenient is that can be expressed in terms of the forward and
backward variables:

ξt(i, j)

αt(i)

i

…

j

…
βt+1(j)

t t + 1

ξt(i, j) = P(qt = i, qt+1 = j ∣ X, λ)

aijbj(xt+1)

5. Transition matrix estimation

91

1

2

N

1

2

N

• Putting it together:

αt(i) βt+1(j)
ξt(i, j) = P(qt = i, qt+1 = j ∣ X, λ)

aijbj(xt+1)

Reaching state i with
observation sequence

Moving to j Generating value Rest of observation
sequence starting from j

/P(X ∣ λ)ξt(i, j) =

ξt(i, j) =
αt(i)aijbj(xt+1)βt+1(j)

∑N
j=1 αt(j)βt(j)

Expected number of
transitions from i to j at time t

5. Transition matrix estimation

92

• All that we have left to do to estimate is to sum over all possible times t̂aij

αt(i)

i

…

j

…
βt+1(j)

t t + 1

… …

1

2

N

…

5. Transition matrix estimation

93

1

2

N

1

2

N

1

2

N

1

2

N

• All that we have left to do to estimate is to sum over all possible times t̂aij

̂aij =
∑T−1

t=1 ξt(i, j)

∑T−1
t=1 ∑N

k=1 ξt(i, k)

Transition at all times between i and j

Transition at all times between i and
any other state

5. Transition matrix estimation

94

• And there we have it! We compute this for all pairs (i,j) and obtain the
transition matrix A

̂A =
̂a11 ̂a12 ̂a13

̂a21 ̂a22 ̂a23

̂a31 ̂a32 ̂a33

5. Transition matrix estimation

95

6. Observation probability

• The first part of the work is now done. Recall that we are in a discrete HMM
framework, and our next task will be to estimate the observation probability. We
suppose that at each state, we can have an observation that is a discrete value in
the « observation vocabulary » .

• A single observation from could be
• Therefore, to characterize our observation probability, we need to compute:

x
V

V vk

̂bj(vk) = (Number of times in state j and observing)E vk

(Number of times in state j)E

96

• We first need to define the probability of being in state j at time t:

State j

At time t

γj(t) = P(qt = j ∣ X, λ)

=
P(qt = j, X ∣ λ)

P(X ∣ λ)

=
αt(j)βt(j)
P(X ∣ λ)

6. Observation probability

97

1

2

N

j

… …

xt xt+1xt−1

1

2

N

States
αt(j) βt(j)

• Deriving is then straightforward !̂bj(vk)

6. Observation probability

b̂j (vk) =
∑T

t=1 ss.t.xt=vk
γt(j)

∑T
t=1 γt(j)

In state j, observe value vk

In state j, observe any value

98

• The simplest value to estimate remains the initial state probability, noted as:

7. Initial state probability

̂πj = γ1(j)

99

• With the new values of and , we can re-compute , leading to new values
of and … This is the forward-backward (Baum Welch) algorithm and relies on EM.

̂aij
̂bj(vk) αt, βt, γt, ξt

̂aij
̂bj(vk)

7. Baum-Welch Algorithm

Initialize and A B
Iterate until convergence

γt(j) =
αt(j)βt(j)
αT (qF)

E-Step

ξt(i, j) =
αt(i)aijbj(xt+1)βt+1(j)

∑N
j=1 αt(j)βt(j)

M-Step
̂aij =

∑T−1
t=1 ξt(i, j)

∑T−1
t=1 ∑N

k=1 ξt(i, k)

b̂j (vk) =
∑T

t=1 ss.t.Ot=vk
γt(j)

∑T
t=1 γt(j)

100

●Now, let’s relax the discrete observation assumption and let the observations
in each state be generated by Gaussians. In that case, we are not interested in
the observation probability, but in the mean and covariance of each Gaussian.
In the EM, the is replaced by:b̂j

8. Gaussian observations

Mean

Weighted average of the value of the
observation by the state probability

̂μj =
∑T

t=1 γj(t)xt

∑T
t=1 γj(t)

Covariance

Σ̂j =
∑T

t=1 γj(t)(xt − ̂μj) (xt − ̂μj)
T

∑T
t=1 γj(t)

101

102

IV.
Viterbi training

● In Viterbi training, we do not worry about summing over all possible paths, but
only on keeping the most likely. Therefore, we can re-define the forward
variable as being:

1. Modified forward algorithm

δt(j) = maxq1,...,qt−1
P(x1, x2, . . . , xt, q1, q2, . . . qt = j ∣ λ)αt(j) = P(x1, x2, . . . , xt, qt = j ∣ λ)

2
j

a2j

1

2

N

j

…

a1j

a2j

aNj

Max

ViterbiBaum-Welch

103

• We can compute the probability of an observation sequence in the following
manner:

Initialization:

Iteration:

Termination:

δ1(i) = πibi(x1)

δt+1(j) = [maxiδt(i)aij] bj (xt+1)

δE = P(X ∣ λ) = maxi δT(i)

δt(j) = maxq1,...,qt−1
P(x1, x2, . . . , xt, q1, q2, . . . qt = j ∣ λ)

1. Modified forward algorithm

104

● It is then easy to determine the best state-sequence. From that sequence, we
can estimate the updated parameters for our Gaussian HMM:

2. Viterbi Training

Count of transition
from i-to-k

Estimated mean

Set of observed
features assigned to

state ‘j’

Estimated covariance

̂aij =
C(i → j)

∑k C(i → k) ̂μj =
∑x∈Zj

x

Zi
Σ̂j =

∑x∈Zj (x − ̂μj) (x − ̂μj)
T

Zj

● And these new parameters are used as new inputs of the forward variable .
We perform these tasks iteratively, and this is the Viterbi Training.

δt

105

●Notice how the update parameters are similar to the ones with Full EM except
that we use hard priors instead of soft ones.

2. Viterbi Training

̂μj =
∑T

t=1 γj(t)xt

∑T
t=1 γj(t)

̂μj =
∑T

t=1 γj(t)xt

∑T
t=1 γj(t)

Full EM Viterbi Training

= 1 if in state with maximal
probability, 0 otherwise

Soft posteriors

106

● Example: Embedded Viterbi - Alignments
● Viterbi yields the most likely path that could contain :

● Acoustic and language model
● Set of possible words, phonemes or some representation

Most likely path is already given
we give the SEQUENCE!

New task: time-align the data
Given speech data

2. Viterbi Training

107

108

V.
HMM-GMM training

• We now define the occupation probability as the probability of occupying
mixture component m of state j at time t.

γjm(t)

1. HMM-GMM training

109

We can re-estimate the parameters accordingly

Mean of mixture
component m of state j:

Covariance matrix of mixture
component m of state j:

Mixture coefficients of
component m of state j:

Estimation in a similar way to
‘transition probabilities’

̂μjm =
∑T

t=1 γjm(t)xt

∑T
t=1 γjm(t)

Σ̂jm =
∑T

t=1 γjm(t)(xt − ̂μim) (xt − ̂μ∧
jm)

T

∑T
t=1 γjm(t)

̂cjm =
∑T

t=1 γjm(t)

∑M
m̂=1 ∑T

t=1 γjm̂(t)

1. HMM-GMM training

110

The forward-backward and Viterbi recursions result in a long sequences of
probabilities being multiplied:

• Could cause floating point underflow problems
• To solve it → calculations are done on log domain
• Log domain: when computing Gaussians the logarithmic power rule transform

the power terms in simple summation

2. Computation constraints

111

112

VI.
HMM applications

113

• In this first example, we generate data from a Markov Chain (fixed transition
probabilities). This gives us a sequence of states. At each state, we generate an
observation following a GMM with 6 components. We have 3 states, and
therefore 3 GMMs with pre-determined parameters (means, covariances and
weights).

1. Finding states and parameters from observations

qt−1 qt qt+1

xt−1 xt xt+1

114

1. Finding states and parameters from observations

115

1. Finding states and parameters from observations

• We then are able to train the HMM-GMM using « hmmlearn » library. This heads
the predicted transition matrix and the parameters of each GMM. Using the
means, the covariances and the weights of the GMM, we can generate the
contour plots of each GMM. This is then displayed in an interactive module.

116

1. Finding states and parameters from observations

117

• HMMs are widely used in Speech Recognition tasks. For example, in Isolated Word
Recognition, we assume a vocabulary of size , and we model each word in the
vocabulary by a district HMM. We assume that we have occurrences of each spoken
word as training.

• The Speech Recognition system is made of the following steps:
• Extract features (typically MFCCs) for each training sample

• Train an HMM for each of the words in the vocabulary (estimate)

• For each sample in test, extract features and estimate likelihood to belong to each
HMM :

V
K

λ A, B, π

v⋆ = argmax1≤v≤V P(O ∣ λv)

2. Isolated Word Recognition

118

• Typically, each HMM has 5 states. The isolated word recognition pipeline can be
presented as such:

Speech MFCC Word
P(X ∣ λ1)

P(X ∣ λ2)

P(X ∣ λ4)

P(X ∣ λ3)

max

2. Isolated Word Recognition

119

• In the following example, we will build a single digit recognizer using open-
source training data (available from https://github.com/moebg/spoken-digit-
recognition/tree/master/data/recordings)

• The whole code is presented in appendix 3.

2. Isolated Word Recognition

https://github.com/moebg/spoken-digit-recognition/tree/master/data/recordings
https://github.com/moebg/spoken-digit-recognition/tree/master/data/recordings
https://github.com/moebg/spoken-digit-recognition/tree/master/data/recordings

120

• This function is used to train the GMM-HMM:
def train_GMMHMM(dataset):
 GMMHMM_Models = {}
 states_num = 5
 GMM_mix_num = 6
 tmp_p = 1.0/(states_num-2)
 transmatPrior = np.array([[tmp_p, tmp_p, tmp_p, 0 ,0], \
 [0, tmp_p, tmp_p, tmp_p , 0], \
 [0, 0, tmp_p, tmp_p,tmp_p], \
 [0, 0, 0, 0.5, 0.5], \
 [0, 0, 0, 0, 1]],dtype=np.float)

 startprobPrior = np.array([0.5, 0.5, 0, 0, 0],dtype=np.float)

 for label in dataset.keys():
 model = hmm.GMMHMM(n_components=states_num, n_mix=GMM_mix_num, \
 transmat_prior=transmatPrior, startprob_prior=startprobPrior, \
 covariance_type='diag', n_iter=10)

 trainData = dataset[label]
 length = np.zeros([len(trainData),], dtype=np.int)
 for m in range(len(trainData)):
 length[m] = trainData[m].shape[0]
 trainData = np.vstack(trainData)
 model.fit(trainData, lengths=length)
 GMMHMM_Models[label] = model

 return GMMHMM_Models

2. Isolated Word Recognition

Parallel path left-to-right model

121

• The training data is quite heterogenous, and the sound would need better
preprocessing. However, the accuracy achieved varies between 30 and 60%, far from
the state-of-the-art, but it’s still a useful example.

2. Isolated Word Recognition

122

• Other examples are mentioned in appendix 4:

• Animal movement prediction with HMMs

• Playlist prediction with HMMs

• Person finding using HMMs

3. Other examples

Thank you for your attention
Questions?

123

124

References

References (1)
• MLE of single Gaussian, http://jrmeyer.github.io/machinelearning/2017/08/18/mle.html

• MLE of GMMs, https://stephens999.github.io/fiveMinuteStats/intro_to_em.html

• EM algorithm and variants: an informal tutorial, Alexis Roche

• (Hard) Expectation Maximization, David McAllester, https://ttic.uchicago.edu/~dmcallester/
ttic101-07/lectures/em/em.pdf

• Short Note on EM, Brendan O’Connor, https://www.cs.cmu.edu/~tom/10601_fall2012/recitations/
em.pdf

• Vector Quantization, David Forsyth, http://luthuli.cs.uiuc.edu/~daf/courses/CS-498-DAF-PS/
Lecture%2012%20-%20K-means,%20GMMs,%20EM.pdf

• Background subtraction with GMMs, D. Hari Hara Santosh, P. Venkatesh, P. Poornesh, L. Narayana Rao, N.
Arun Kumar, http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.649.8642&rep=rep1&type=pdf

125

http://jrmeyer.github.io/machinelearning/2017/08/18/mle.html
https://stephens999.github.io/fiveMinuteStats/intro_to_em.html
https://ttic.uchicago.edu/~dmcallester/ttic101-07/lectures/em/em.pdf
https://ttic.uchicago.edu/~dmcallester/ttic101-07/lectures/em/em.pdf
https://www.cs.cmu.edu/~tom/10601_fall2012/recitations/em.pdf
https://www.cs.cmu.edu/~tom/10601_fall2012/recitations/em.pdf
http://luthuli.cs.uiuc.edu/~daf/courses/CS-498-DAF-PS/Lecture%2012%20-%20K-means,%20GMMs,%20EM.pdf
http://luthuli.cs.uiuc.edu/~daf/courses/CS-498-DAF-PS/Lecture%2012%20-%20K-means,%20GMMs,%20EM.pdf
http://luthuli.cs.uiuc.edu/~daf/courses/CS-498-DAF-PS/Lecture%2012%20-%20K-means,%20GMMs,%20EM.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.8642&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.8642&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.8642&rep=rep1&type=pdf

• A tutorial on hidden Markov models and selected applications in speech
recognition, Lawrence R. Rabiner, https://www.ece.ucsb.edu/Faculty/Rabiner/
ece259/Reprints/tutorial%20on%20hmm%20and%20applications.pdf

• Isolated digit recognition adapted from : https://github.com/wblgers/
hmm_speech_recognition_demo

• Westmont College Introduction to Forward-Backward, Patterson, https://
www.youtube.com/watch?v=gYma8Gw38Os

• Hidden Markov Models, Speech and Language Processing, Daniel Jurafsky &
James H. Martin. https://web.stanford.edu/~jurafsky/slp3/A.pdf

126

References (2)

https://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial%20on%20hmm%20and%20applications.pdf
https://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial%20on%20hmm%20and%20applications.pdf
https://www.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial%20on%20hmm%20and%20applications.pdf
https://github.com/wblgers/hmm_speech_recognition_demo
https://github.com/wblgers/hmm_speech_recognition_demo
https://www.youtube.com/watch?v=gYma8Gw38Os
https://www.youtube.com/watch?v=gYma8Gw38Os
https://web.stanford.edu/~jurafsky/slp3/A.pdf

• Ellis, D. P. (2008). An introduction to signal processing for speech.
• Peter Bell. (2020). Automatic Speech Recognition (ASR) 2019-20: Lectures. University of

Edinburgh.
• Daniel J. and James H. Martin. (2020). Speech and Language Processing, draft 3rd Edition
• Application-(a): Adam, T., Griffiths, et al. (2019). Joint modelling of multi-scale animal

movement data using hierarchical hidden Markov models. Methods in Ecology and
Evolution, 10(9), 1536-1550.

• Application-(b): Li, T., Choi, M., Fu, K., & Lin, L. (2018). Music sequence prediction with
mixture hidden markov models. arXiv preprint arXiv:1809.00842.

• Application-(c): Bayoumi, A., Karkowski, P., & Bennewitz, M. (2019). Speeding up person
finding using hidden Markov models. Robotics and Autonomous Systems, 115, 40-48.

References (3)

127

128

Appendix

129

• The origin of the auxiliary function is linked to the Jensen’s inequality:

L(θ) − L(θ(t)) = log
p(X ∣ θ)

p(X ∣ θ(t))
= log∫

p(Z, X ∣ θ)
p(X ∣ θ(t))

dz

= log∫
p(Z, X ∣ θ)

p(Z, X ∣ θ(t))
P(Z ∣ X, θ(t))dz = log∫

p(Z ∣ θ)
p(Z ∣ θ(t))

P(Z ∣ X, θ(t))dx

≥ ∫ log
p(Z ∣ θ)

p(Z ∣ θ(t))
P(Z ∣ X, θ(t))dx

1. Where does the auxiliary function come from?

Jensen’s Inequality

Auxiliary function Q(θ, θ(t))

The true likelihood variation is always greater than the variation of the auxiliary function

2. Cat word Trellis mesh

• Example of the Trellis mesh for the word CAT:

◆ Word mapped to phones
◆ 3-states for each phone
◆ y-axis: current state
◆ x-axis: observations

130

131

• We can extract MFCCs in just a few lines of code:

import python_speech_features as mfcc
from scipy.io import wavfile
import os
import python_speech_features as mfcc
from scipy.io import wavfile
from hmmlearn import hmm
import numpy as np

def extract_mfcc(full_audio_path):
 sample_rate, wave = wavfile.read(full_audio_path)
 mfcc_features = mfcc.mfcc(wave, sample_rate, 0.025, 0.01, 20, appendEnergy = False)
 return mfcc_features

3. Isolated Word Recognition

132

• Then, we build a training data from the training samples folder

def build_data(dir):

 fileList = [dir+f for f in os.listdir(dir) if os.path.splitext(f)[1] == '.wav']
 dataset = {}
 for fileName in fileList:
 label = fileName.split("/")[2].split('_')[0]
 feature = extract_mfcc(fileName)
 if label not in dataset.keys():
 dataset[label] = []
 dataset[label].append(feature)
 else:
 exist_feature = dataset[label]
 exist_feature.append(feature)
 dataset[label] = exist_feature

 return dataset

3. Isolated Word Recognition

133

• Then comes the moment to train the GMMs for each label
def train_GMMHMM(dataset):
 GMMHMM_Models = {}
 states_num = 5
 GMM_mix_num = 6
 tmp_p = 1.0/(states_num-2)
 transmatPrior = np.array([[tmp_p, tmp_p, tmp_p, 0 ,0], \
 [0, tmp_p, tmp_p, tmp_p , 0], \
 [0, 0, tmp_p, tmp_p,tmp_p], \
 [0, 0, 0, 0.5, 0.5], \
 [0, 0, 0, 0, 1]],dtype=np.float)

 startprobPrior = np.array([0.5, 0.5, 0, 0, 0],dtype=np.float)

 for label in dataset.keys():
 model = hmm.GMMHMM(n_components=states_num, n_mix=GMM_mix_num, \
 transmat_prior=transmatPrior, startprob_prior=startprobPrior, \
 covariance_type='diag', n_iter=10)

 trainData = dataset[label]
 length = np.zeros([len(trainData),], dtype=np.int)
 for m in range(len(trainData)):
 length[m] = trainData[m].shape[0]
 trainData = np.vstack(trainData)
 model.fit(trainData, lengths=length)
 GMMHMM_Models[label] = model

 return GMMHMM_Models

3. Isolated Word Recognition

134

• Finally, we run the pipeline and estimate the accuracy of the system

def main():
 trainDir = './train_audio/'
 trainDataSet = build_data(trainDir)
 print("Finish prepare the training data")
 hmmModels = train_GMMHMM(trainDataSet)
 print("Finish training of the GMM_HMM models for digits 0-9")

 testDir = './test_audio/'
 testDataSet = build_data(testDir)

 score_cnt = 0
 for label in testDataSet.keys():
 feature = testDataSet[label]
 scoreList = {}
 for model_label in hmmModels.keys():
 model = hmmModels[model_label]
 score = model.score(feature[0])
 scoreList[model_label] = score
 predict = max(scoreList, key=scoreList.get)
 print("Test on true label ", label, ": predict result label is ", predict)
 if predict == label:
 score_cnt+=1
 print("Final recognition rate is %.2f"%(100.0*score_cnt/len(testDataSet.keys())), "%")

3. Isolated Word Recognition

• (a) Animal movement
modeling with HMMs

• (b) Playlist prediction
with HMMs

• (c) Person finding
with HMMs

Applications

4. Selected practical applications of HMMs

135

• They use a hierarchical hidden Markov model (HHMM) as a statistical framework to jointly model multi-temporal data
streams, collected at different temporal resolutions:
− HHMM: multi-level stochastic processes, each hidden state is a probabilistic model (emit sequences)
−Big picture: movements patterns involving long-term vs short-term movement patterns

• Problem of initialization:
− (1) Random range of different set of initial values
− (2) pick largest likelihood

• To obtain the ‘path’: decoded with Viterbi Algorithm
• Input sequences:

− Vertical movements: 10-min intervals (log-vertical movements)
− Horizontal movements: 1-day intervals

• The idea is to know whether the fish is moving (3-states)
− State 1: static behavior
− State 2: moving (mobile) behavior
− State 3: moving but more prone to ‘horizontal’ movement

4.a. Joint modeling of multi-scale animal movement data using hierarchical
hidden Markov models

136

• Cod & Horn
shark

• Hierarchical hidden
Markov model

D
ev

ic
e

an
d

TA
G

s
(G

P
S

 a
nd

 d
ep

tjh
)

• Decoding the
movement (Viterbi)

R
es

tin
g

M
ob

ile
M

ig
ra

tin
g

4.a. Joint modeling of multi-scale animal movement data using hierarchical
hidden Markov models

137

• Kaggle competition – recommendation system for playlist
• Currently, systems are item- or user-based (collaborative filtering)
• Idea: System based on HMM and GMM/HMM

− Music recommendation → more challenging than movies:
● Users don’t tend to repeat song by song, BUT SEQUENCES!
● Goal: predict the 30th artist that a given user will play, given the 29 previous artist

• They proposed models where use more ‘steps’ before to yield a better generalization/score
• Introduce the explore/exploit tradeoff:

− High-performance model for only a given constrained task, instead the real world needs more
robust models

• Ranked 1 on the competition

4.b. Music Sequence Prediction with Mixture Hidden Markov Models

138

• Ability to efficiently search for a person in a given environment, challenging:
− Freely moving on the environment
− Constrained field of view

• Idea: simulates the user’s presence locations based on HMMs:
− Predict user’s motion
− Compute the likelihood at different locations given the predictions
− Maximize the user’s expected location (likelihood of observation)

• The robot will search for the users along the shorter path to a probable location, if not found, set
a new probable location and search:
−After each step, it estimates the best path again, cause it could fin the user before reaching the

end

4.c. Speeding up person finding using hidden Markov models

139

• Robots and user’s path
(updated step by steps

• Robot drives along the
shortest path

• Robot could finish before
reaching the end (updating
its state)

R
ob

ot
: m

ax
im

iz
e

ob
se

rv
at

io
n

lik
el

ih
oo

d

• Random generated user’s paths
on the given environment

Path used for
HMM training

4.c. Speeding up person finding using hidden Markov models

140

