

17th International Conference on Natural Language Processing

BertAA: BERT fine-tuning for Authorship Attribution

Maël Fabien^{1,2}, Esaú Villatoro-Tello^{1,3}, Petr Motlicek¹, and Shantipriya Parida¹

Outline

- 1. Introduction to Authorship Attribution
- 2. Related works
- 3. BertAA: Bert fine-tuning for AA
- 4. Authorship Attribution corpora
- 5. Results
- 6. Future Works
- 7. Conclusion

Authorship Analysis

Author Profiling

Authorship
Attribution

Authorship Verification

Attributing a text to the correct author among of closed set of potential writers (e.g. 5, 10, 25, 50, 75 or 100 authors)

Authorship Attribution

Authorship Attribution Plagiarism detection

Historical Literature

Forensic investigations

Traditional methods

Ensemble models

Deep-learning methods

Recurrent Neural Networks

Deep-learning methods

Convolutional Neural Networks

Architecture

BertAA

+ Style

+ Hybrid

External features

Stylistic

- Length of text
- Number of words
- Average length of words
- Number of short words
- Proportion of digits and capital letters
- Individual letters and digits frequencies
- Hapax-legomena
- Frequency of 12 punctuation marks

Hybrid

- Frequency of the 100 most frequent character-level bi-grams
- Frequency of the 100 most frequent character-level tri-grams

Corpora

Dataset	Number of tokens	Number of texts
Enron	± 200	± 10′000
IMDb	± 100	± 3000
IMDb 62	340	1000
Blog	± 90	± 2500

How does the performance compare to SOTA?

Detect M Author		Baslines			Proposed Method		
Dataset	N-Authors	Stylo.	Char N-gram	TF-IDF	BertAA	+ Style	+ Style + Hybrid
	5	75.0	84.4	98.0	99.95	99.95	99.95
Enron	10	54.9	70.5	96.4	99.1	99.1	99.1
	25	35.6	53.2	92.7	98.7	98.7	98.7
	50	20.4	44.8	90.8	98.1	98.2	98.2
	75	17.3	40.6	90.1	97.6	97.5	97.5
	100	15.8	36.9	88.3	97.0	97.0	97.1
	5	65.8	92.1	98.1	99.6	99.6	99.6
IMDb	10	44.6	79.2	93.9	98.1	98.2	98.2
	25	25.5	55.8	84.1	93.2	92.9	92.9
	50	17.4	44.2	82.1	90.7	90.6	90.6
	75	14.7	37.6	79.2	88.3	87.8	87.8
	100	11.8	33.6	76.6	86.1	85.3	85.4
	5	34.7	40.0	45.7	61.3	59.7	59.8
Blog	10	18.9	31.9	45.0	65.4	62.4	62.4
	25	9.9	23.4	42.0	65.3	64.4	64.4
	50	6.2	15.7	41.4	59.7	58.7	58.7
	75	5.0	15.7	42.2	60.9	59.0	59.2
	100	4.2	13.8	40.5	58.8	57.3	57.6

Impostors (Koppel and Winter, 2014) 35.4 22.6 SCAP (Frantzeskou et al., 2006) 48.6 41.6 LDAH-S (El et al.) 52.5 18.3 CNN (Ruder et al., 2016) 61.2 49.4 Continuous N-gram (Sari et al., 2017) 61.3 52.8 N-gram CNN (Zhang et al., 2018) 63.7 53.1 Syntax CNN (Zhang et al., 2018) 64.1 56.7		10	
SCAP (Frantzeskou et al., 2006) 48.6 41.6 LDAH-S (El et al.) 52.5 18.3 CNN (Ruder et al., 2016) 61.2 49.4 Continuous N-gram (Sari et al., 2017) 61.3 52.8 N-gram CNN (Zhang et al., 2018) 63.7 53.1 Syntax CNN (Zhang et al., 2018) 64.1 56.7	Approach	10	50
LDAH-S (El et al.) 52.5 18.3 CNN (Ruder et al., 2016) 61.2 49.4 Continuous N-gram (Sari et al., 2017) 61.3 52.8 N-gram CNN (Zhang et al., 2018) 63.7 53.1 Syntax CNN (Zhang et al., 2018) 64.1 56.7	Impostors (Koppel and Winter, 2014)	35.4	22.6
CNN (Ruder et al., 2016) 61.2 49.4 Continuous N-gram (Sari et al., 2017) 61.3 52.8 N-gram CNN (Zhang et al., 2018) 63.7 53.1 Syntax CNN (Zhang et al., 2018) 64.1 56.7	SCAP (Frantzeskou et al., 2006)	48.6	41.6
Continuous N-gram (Sari et al., 2017) 61.3 52.8 N-gram CNN (Zhang et al., 2018) 63.7 53.1 Syntax CNN (Zhang et al., 2018) 64.1 56.7	LDAH-S (El et al.)	52.5	18.3
N-gram CNN (Zhang et al., 2018) 63.7 53.1 Syntax CNN (Zhang et al., 2018) 64.1 56.7	CNN (Ruder et al., 2016)	61.2	49.4
Syntax CNN (Zhang et al., 2018) 64.1 56.7	Continuous N-gram (Sari et al., 2017)	61.3	52.8
	N-gram CNN (Zhang et al., 2018)	63.7	53.1
BertAA 65.4 59.7	Syntax CNN (Zhang et al., 2018)	64.1	56.7
	BertAA	65.4	59.7

Accuracy on the Blog Authorship Corpus

+5.3% relative improvement compared to SOTA

Are external features useful?

F1-Score improvement with external features

+2.70% with stylistic features

+2.73% with hybrid and stylistic features

Are external features useful?

Wider variety of errors

But errors are less

important

What happens with less training data?

Approach	Accuracy
LDA+Hellinger (El et al.)	82
Word Level TF-IDF	91.4
CNN-Char (Ruder et al., 2016)	91.7
Comp.Att.+Sep.Rec. (Song et al., 2019)	91.8
Token-SVM (Seroussi et al., 2014)	92.52
SCAP (Frantzeskou et al., 2006)	94.8
Cont. N-gram Char (Sari et al., 2017)	94.8
(C+W+POS)/LM (Kamps et al., 2017)	95.9
N-gram + Style (Sari et al., 2018)	95.9
Syntax CNN(Zhang et al., 2018)	96.2
BertAA + Style + Hybrid - 1 epoch	88.7
BertAA + Style - 3 epochs	91.1
BertAA + Style + Hybrid - 5 epochs	92.3
BertAA + Style + Hybrid - 10 epochs	93.0

1000 texts per author

341 tokens on average

Longer and fewer texts
Performance below CNN

Accuracy on the IMDb62 Corpus

What happens with a more authors?

93% of the accuracy at 5 authors maintained at 100 authors

How much fine-tuning is needed?

- Accuracy kept improving with the fine-tuning
- 5 epochs is a good trade-off with the time of fine-tuning

Take away message

Future works

- Further pre-training of BERT on target domain
- Explore other pre-trained Language Models
- Add new types of features
- Authorship Verification via similarity metrics on the embeddings
- Authorship Attribution on Automatic Speech Recognition transcripts in criminal investigations

Conclusion

- A BERT fine-tuning for AA
- That works well for a large number of texts
- And can be extended with external features to improve F1-score
- While setting a new SOTA on the Blog authorship dataset
- And a first benchmark on the full IMDb corpus

Datasets and code

Contact

Maël Fabien

Ph.D. student at Idiap
Research Institute and EPFL

mael.fabien@idiap.ch

https://maelfabien.github.io/

https://github.com/maelfabien

https://www.linkedin.com/in/mael-fabien/

https://twitter.com/mael2ml

References

Traditional Methods:

- Lukas Muttenthaler, Gordon Lucas, and Janek Amann. « Authorship Attribution in Fan-Fictional Texts given variable length Character and Word N-Grams »
- Yunita Sari, Mark Stevenson, and Andreas Vlachos. 2018. « Topic or Style? Exploring the Most Useful Features for Authorship Attribution » in Proceedings of the 27th International Conference on Computational Linguistics, pages 343-353, Santa Fe, New Mexico, USA. Association for Computational Linguistics.
- David Madigan, Alexander Genkin, David D. Lewis, and Dmitriy Fradkin. 2005. « Bayesian Multinomial Logistic Regression for Author Identification ». AIP Conference Proceedings, 803(1):509-516. Publisher: American Institute of Physics.
- Andrea Bacciu, Massimo La Morgia, Alessandro Mei, Eugenio Nerio Nemmi, and Julinda Stefa. 2020. « Cross-Domain Authorship Attribution Combining Instance-Based and Profile-Based Features ». page 14.

Deep Learning Methods:

- Chen Qian, Tianchang He, and Rao Zhang. « Deep Learning based Authorship Identification ». page 9
- Sebastian Ruder, Parsa Ghaffari, and John G. Breslin. 2016. « Character-level and Multi-channel Convolutional Neural Networks for Large-scale Authorship Attribution ». arXiv:1609.06686 [cs]. ArXiv: 1609.06686.
- Prasha Shrestha, Sebastian Sierra, Fabio Gonzalez, Manuel Montes, Paolo Rosso, and Thamar Solorio. 2017. « Convolutional Neural Networks for Author- ship Attribution of Short Texts ». In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 669-674, Valencia, Spain. Association for Computational Linguistics.